For the 70nm CMOS node, it is anticipated that conventional implantation and spike annealing approaches, even with pre-amorphisation and co-implantation, are unlikely to provide pMOS junctions consistent with the ITRS requirements. Here the junction performance is limited by equilibrium solid solubility.
As laser annealing and in-situ doping techniques currently have unsolved integration problems, there is a renewed interest in using solid phase epitaxial regrowth (SPER) to form ultra-shallow metastable junctions. Such junctions have the potential to have an active dopant profile similar to the as-implanted profile. This offers above equilibrium solid solubility and abrupt profiles compatible with 70nm and even 45nm nodes. However there are concerns about residual defects, deactivation, diffusion and uniformity.
In this paper we show how the Ge, F and B implant and SPER anneal can be optimised for abrupt, uniform and highly activated B junctions. There is latitude for higher doses and energies than conventional implants, however results show that this may lead to clustering causing enhanced deactivation and reduced mobility. We give attention to the probing issues involved in characterising partially annealed junctions.
With this approach, p-type junctions having a sheet resistance of 265 ohms/sq and depth of 22nm are realised which are compatible with 70nm and potentially 45nm CMOS nodes.