Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T00:23:50.429Z Has data issue: false hasContentIssue false

Thermal Evolution of Extrinsic Defects in Ion Implanted Silicon: Current Understanding and Modelling

Published online by Cambridge University Press:  01 February 2011

Fuccio Cristiano
Affiliation:
Ion Implantation Group CEMES-LAAS/CNRS Toulouse – CEMES/CNRS, 29, rue J.Marvig, 31055 Toulouse, France – LAAS/CNRS, 7 Ave. Colonel Roche, 31077 Toulouse, France
Benjamin Colombeau
Affiliation:
Current address: School of Electronics, Computing and Mathematics, Univ. of Surrey, UK
Bernadette de Mauduit
Affiliation:
Ion Implantation Group CEMES-LAAS/CNRS Toulouse – CEMES/CNRS, 29, rue J.Marvig, 31055 Toulouse, France – LAAS/CNRS, 7 Ave. Colonel Roche, 31077 Toulouse, France
Caroline Bonafos
Affiliation:
Ion Implantation Group CEMES-LAAS/CNRS Toulouse – CEMES/CNRS, 29, rue J.Marvig, 31055 Toulouse, France – LAAS/CNRS, 7 Ave. Colonel Roche, 31077 Toulouse, France
Gerard Benassayag
Affiliation:
Ion Implantation Group CEMES-LAAS/CNRS Toulouse – CEMES/CNRS, 29, rue J.Marvig, 31055 Toulouse, France – LAAS/CNRS, 7 Ave. Colonel Roche, 31077 Toulouse, France
Alain Claverie
Affiliation:
Ion Implantation Group CEMES-LAAS/CNRS Toulouse – CEMES/CNRS, 29, rue J.Marvig, 31055 Toulouse, France – LAAS/CNRS, 7 Ave. Colonel Roche, 31077 Toulouse, France
Get access

Abstract

We present an extensive study of the thermal evolution of the extended defects found in ion implanted Si as a function of annealing conditions. We will first review their structure and energetics and show that the defect kinetics can be described by an Ostwald ripening process whereby the defects exchange Si atoms and evolve in size and type to minimise their formation energy. Finally, we will present a physically based model to predict the evolution of extrinsic defects during annealing through the calculation of defect densities, size distributions, number of clustered interstitials and free-interstitial supersaturation. We will show some successful applications of our model to a variety of experimental conditions and give an example of its predictive capabilities at ultra low implantation energies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] International Technology Roadmap for Semiconductors (SIA, Austin, 2000)Google Scholar
[2] Baek, S., Jang, T. and Hwang, H., Appl. Phys. Lett. 80, 2272 (2002).Google Scholar
[3] Kerrien, G., Boulmer, J., Debarre, D., Bouchier, D., Grouillet, A. and Lenoble, D., Appl. Surf. Sci. 186, 45 (2002).Google Scholar
[4] Thomson, S., Packan, P. and Bohr, M., Intel Technol. J., Q3 (1998).Google Scholar
[5] Stolk, P.A., Gossmann, H.J., Eaglesham, D.J., Jacobson, D.C., Rafferty, C.S., Gilmer, G.H., Jaraiz, M., Poate, J.M., Luftman, H.S., Haynes, T.E., J. Appl. Phys. 81, 6031 (1997).Google Scholar
[6] Claverie, A., Colombeau, B., Ben Assayag, G., Bonafos, C., Cristiano, F., Omri, M. and Mauduit, B. de, MSSP, 610, (2000).Google Scholar
[7] Hutchison, J.L., Aseev, A.L. and Fedina, L.I., Inst. Phys. Conf. Ser. 134, 41 (1993).Google Scholar
[8] Eaglesham, D. J., Stolk, P.A., Cheng, J.Y., Gossmann, H.J., Haynes, T.E. and Poate, J.M., Inst. Phys. Conf. Ser. 146, 451 (1995).Google Scholar
[9] Takeda, S., Proc. Microsc. Semicond. Mater. Conf. (Oxford, 7-10 April, 1997) Inst. Phys. Conf. Ser. 157, 25 (1997).Google Scholar
[10] Ferreira Lima, C.A. and Howie, A. Phil. Mag. 34, 1057 (1976).Google Scholar
[11] Salisbury, I.G. and Loretto, M.H. Phil. Mag. A39, 317 (1979).Google Scholar
[12] Takeda, S. Jpn. J. Appl. Phys. 30, L639 (1991).Google Scholar
[13] Takeda, S., Kohyama, M. and IbePhil, K.. Mag. A70, 287 (1994).Google Scholar
[14] Eaglesham, D.J., Stolk, P.A., Gossmann, H.J. and Poate, J.M., Appl. Phys. Lett., 65, 2305 (1994).Google Scholar
[15] Takeda, S., Muto, S. and Hirata, M. Mat. Res. Soc. Symp. Proc. 262, 209 (1992).Google Scholar
[16] Venezia, V.C., Kalyanaraman, R., Gossmann, H.J.L., and Rafferty, C.S and Werner, P., Appl. Phys. Lett. 79, 1429 (2001).Google Scholar
[17] Claverie, A., Giles, L.F., Omri, M., de Mauduit, B., Assayag, G. Ben and Mathiot, D., Nucl. Instr. Meth. B, 147, 1 (1999).Google Scholar
[18] Bicknell, R. J. of Microsc. 98, 165 (1973).Google Scholar
[19] Jenkins, M.L., Cockayne, D.J.H. and Whelan, M.J., J. of Microsc. 98, 155 (1973).Google Scholar
[20] Mauduit, B. de, Laânab, L., Bergaud, C., Faye, M.M., Martinez, A., and Claverie, A., Nucl. Inst. and Meth. B, 84, 190 (1994).Google Scholar
[21] Chen, L.J. and Wu, I.W., J. Appl. Phys. 52, 3310 (1981).Google Scholar
[22] Salisbury, I.G. Acta Metall. 30, 627 (1982).Google Scholar
[23] Sadana, D.K. and Washburn, J. Phil. Mag. B46, 611 (1982).Google Scholar
[24] Wu, I.W. and Chen, L.J. J. Appl. Phys. 58, 3032 (1985).Google Scholar
[25] Jones, K.S., Prussin, S. and Weber, E.R. Appl. Phys. A45, 1 (1988).Google Scholar
[26] Pan, G.Z., Tu, K.N. and Prussin, A. J. Appl. Phys. 81, 1 (1997).Google Scholar
[27] Raman, R., Law, M.E., Krishnamoorthy, V. and Jones, K.S. Appl. Phys. Lett. 74, 700 (1999)Google Scholar
[28] Laânab, L., Bergaud, C., Faye, MM., Fauré, J., Martinez, A. and Claverie, A., Mat. Res. Soc. Symp. Proc., 279, 381 (1993).Google Scholar
[29] Omri, M., Giles, L. F., Mauduit, B. de and Claverie, A., Mat. Res. Soc. Proc., (1999).Google Scholar
[30] Giles, M.D., J. Electrochem. Soc., 138, 1160 (1991).Google Scholar
[31] Herner, B., Gossman, H.J., Pelaz, L., Gilmer, G.H., Jaraiz, M., Jacobson, D.C. and Eaglesham, D.J., J. Appl. Phys. 83, 6182 (1998).Google Scholar
[32] Lampin, E., Senez, V. and Claverie, A., J. Appl. Phys., 85, 8137 (1999).Google Scholar
[33] Claverie, A., Bonafos, C., Alquier, D. and Martinez, A., Solid State Phenomena, V47-48, 195 (1996).Google Scholar
[34] Corbett, J.W., Karins, J.P. and Tan, T.Y., Nucl. Intr. and Methods in Phys. Res., B182-183, 457 (1981).Google Scholar
[35] Cristiano, F., Colombeau, B., Cowern, N.E.B and Claverie, A., private communication.Google Scholar
[36] Huizing, H.G.A., Visser, C.G.G, Cowern, N.E.B, Stolk, P.A. and Kruif, R.C.M de, Appl. Phys. Lett, 69, 1211 (1996).Google Scholar
[37] Li, J. and Jones, K.S., Appl. Phys. Lett. 73 (25), 3748 (1998).Google Scholar
[38] Cristiano, F., Grisolia, J., Colombau, B., Omri, M., deMauduit, B., Claverie, A., Giles, F., Cowern, N., J. Appl. Phys. 87, 8420 (2000).Google Scholar
[41] Cowern, N.E.B., Alquier, D., Omri, M., Claverie, A. and Nejim, A., Nucl. Instr. Meth. in Phys. Res. B148, 257 (1999).Google Scholar
[42] Colombeau, B., Cristiano, F., Marrot, J.C., Ben, G. Assayag and Claverie, A., Mat. Res. Soc. Symp. Proc. 2001, in press.Google Scholar
[43] Schroeder, H., Fichner, P., Trinkaus, H., Fundamental aspects of inert gasesu solids, Plenum Press New York, 279, 289 (1991).Google Scholar
[44] Bonafos, C., Colombeau, B., Altibelli, A., Carrada, M., Ben Assayag, G., Garrido, B., and Claverie, A., NIM B, 178, 17 (2001).Google Scholar
[45] De Souza, M.M., Ngw, C.K., Shishkin, M. and Narayanan, E.M., Phys. Rev. Lett., 83, 1799 (1999).Google Scholar
[46] Colombeau, B., PhD Dissertation, Toulouse, France, 2001.Google Scholar
[47] Alquier, D., Cowern, N., Pichler, P., Armand, C., Martinez, A., Mathiot, D., Omri, M., Claverie, A., MRSSP, 532, 67 (1998).Google Scholar
[48] Chao, H.S., Crowder, S.W., Griffin, P.B., Plummer, J.D., J. Appl. Phys., 79, 2352 (1996).Google Scholar
[49] Claverie, A., Colombeau, B., Cristiano, F., Altibelli, A. and Bonafos, C., MRSSP 2001, in press.Google Scholar
[50] Colombeau, B., Cristiano, F., Altibelli, A., Bonafos, C., Ben Assayag, G., Claverie, A., Appl. Phys. Lett., 78, 940 (2001).Google Scholar