Deep level defects have been detected and analyzed in epitaxial ZnSe layers grown by molecular beam epitaxy (MBE) on GaAs and on In0.04Ga0.96As using deep level optical spectroscopy (DLOS). A series of samples, which differ only in the initial Zn:Se beam pressure ratio (BPR = 1:1, 1:10, 10:1) during the growth nucleation step, were characterized by DLOS in order to assess the dependence of bulk deep level formation on interface nucleation conditions. The transient and steady state photocapacitance measurements were performed using 100 W Quartz Halogen and 450 W Xe lamps as light sources, in the spectral range of 0.9 to 2.9 eV with a resolution better than 0.02 eV. The capacitance transients were recorded for time windows of 10 msec to 5 sec after light excitation of the sample, which was kept at a temperature of 100 K. Using semi-transparent Au Schottky contacts, several deep levels in the ZnSe layer were detected for all BPR's, with optical threshold energies of 1.1, 1.46 and 1.9 eV below the conduction band. These energies were obtained from the slope of the capacitance transient at different time intervals and were confirmed by steady state photocapacitance. The concentration of the levels was in the range 1012 to 1014 cm−3. Both the 1.1 and 1.46 eV trap concentrations were found to depend strongly on lattice mismatch conditions, whereas the latter was shown to largely depend on BPR. The optical threshold of the 1.9 eV trap correlates well with a ˜1.9 eV cathodoluminescence (CL) peak, which has been previously associated with either Zn vacancies or Gazn substitutional defects in Zn-deficient material.