No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
The growth of reduced dislocation density GaAs/Si is performed by a novel two-step technique where the first epitaxy step takes place at 75° C and the second is performed at 580° C. The initial deposition is single crystal, continuous, and planar such that there is no contribution to the dislocation density from Volmer-Weber island coalescence and no trapping of dislocations in pinholes. Using this new growth technique, a reduced dislocation density the order of 106/cm2 was obtained. The improved crystallinity is indicated by the more narrow x-ray full-width-at-half-maximum (FWHM) value of 110 arcseconds. GaAs p-i-n diodes were grown on the reduced dislocation density GaAs/Si and it was found that the resistivity of the intrinsic region for the heteroepitaxial diodes was similar to homoepitaxial ones for small mesa sizes.