Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-28T23:09:34.871Z Has data issue: false hasContentIssue false

Growth of Improved GaAs/Si: Suppression of Volmer-Weber Nucleation for Reduced Threading Dislocation Density

Published online by Cambridge University Press:  10 February 2011

P. J. Taylor
Affiliation:
Dept. Mat. Sci. and Engineering, University of Virginia, Charlottesville, VA 22903 now at M.I.T. Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420)
W.A. Jesser
Affiliation:
Dept. Mat. Sci. and Engineering, University of Virginia, Charlottesville, VA 22903
G. Simonis
Affiliation:
Optoelectronics Division, US Army Research Laboratory, Adelphi, MD. 20783
W. Chang
Affiliation:
Optoelectronics Division, US Army Research Laboratory, Adelphi, MD. 20783
M. Lara-Taysing
Affiliation:
Optoelectronics Division, US Army Research Laboratory, Adelphi, MD. 20783
J. Bradshaw
Affiliation:
Optoelectronics Division, US Army Research Laboratory, Adelphi, MD. 20783
W. Clark
Affiliation:
Optoelectronics Division, US Army Research Laboratory, Adelphi, MD. 20783
M. Martinka
Affiliation:
CECOM Night-Vision and Electronic Sensors Directorate, Fort Belvoir, VA 22060
J.D. Benson
Affiliation:
CECOM Night-Vision and Electronic Sensors Directorate, Fort Belvoir, VA 22060
J.H. Dinàn
Affiliation:
CECOM Night-Vision and Electronic Sensors Directorate, Fort Belvoir, VA 22060
Get access

Abstract

The growth of reduced dislocation density GaAs/Si is performed by a novel two-step technique where the first epitaxy step takes place at 75° C and the second is performed at 580° C. The initial deposition is single crystal, continuous, and planar such that there is no contribution to the dislocation density from Volmer-Weber island coalescence and no trapping of dislocations in pinholes. Using this new growth technique, a reduced dislocation density the order of 106/cm2 was obtained. The improved crystallinity is indicated by the more narrow x-ray full-width-at-half-maximum (FWHM) value of 110 arcseconds. GaAs p-i-n diodes were grown on the reduced dislocation density GaAs/Si and it was found that the resistivity of the intrinsic region for the heteroepitaxial diodes was similar to homoepitaxial ones for small mesa sizes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Morkoç, H., Fang, Adomi, Iyer, Zabel, Choi, Otsuka, Journ. Appl. Phys., Vol 69(7) p. R31 (1990).Google Scholar
2. Chand, N., Ren, Macrander, Sergent, van der Ziel, Hull, Chu, Chow, Lang, Journ. Appl. Phys., Vol 67(5) p. 2343 (1990).Google Scholar
3. Kaminishi, K., Solid State Technology, Nov. 1987, p. 91 (1987).Google Scholar
4. Morkoç, H., Unlu, Zabel, Otsuka, Solid State Technology, Mar. 1988, p. 71 (1988).Google Scholar
5. Kroemer, H., Liu, Petroff, Journ. Cryst. Growth, Vol.95, p. 96. (1989).Google Scholar
6. Egawa, T., Murata, Y., Jimbo, T., Umeno, M., IEEE Photonics Tech. Lett., Vol.9, No. 7, p. 872 (1997).Google Scholar
7. Noge, H., Kano, H., Hashimoto, M., Igarashi, I., Journ. Appl. Phys. Vol 64(4) p. 2246 (1988).Google Scholar
8. Ejeckham, F., Lo, Y., Subramanian, S., Hou, H., Hammons, B., Appl. Phys. Lett., Vol.70(13) p. 1685 (1997).Google Scholar
9. Ejeckham, F., Chua, C., Zhu, Z., Lo, Y., Hong, M., Bhat, R., Appl. Phys. Lett., Vol.67(26) p. 3936 (1996).Google Scholar
10. Bringans, R., Olmstead, M., Uhrberg, R., Bachrach, R., Appl. Phys. Lett., Vol.51(7) p. 524 (1987).Google Scholar
11. Sanada, T., Wada, O., Jap. Journ., Appl. Phys., Vol.19 p. L491 (1980).Google Scholar
12. Shiraki, H., Ishizaka, , Journ., Electrochem. Soc., Vol 133 No. 4, p. 666 (1986).Google Scholar
13. Ishida, Y., Akiyama, Nishi, Japn. Journ. Appl. Phys. Vol.26(3) p. L163 (1987).Google Scholar
14. Lee, H., Shijicho, Tsai, Matyi, Appl. Phys. Lett., Vol 50(1) p. 31 (1987).Google Scholar
15. Cho, A., Surf. Sci., Vol.17, p. 494 (1969).Google Scholar
16. Hull, R., Koch, S., Rosner, S., Harris, J., Mat. Res. Soc. Symp. Proc., Vol.116, p. 111 (1988).Google Scholar
17. Inuzaka, H., Suzuki, Y., Awano, N., Hara, K., Mat. Res. Soc. Symp. Proc., Vol.116, p. 137 (1988).Google Scholar
18. Stowell, M., ed. Matthews, J. W., Epitaxial Growth: Part B: Chapter 5, Materials Science Series, Academic Press, NY, p. 437492, (1975).Google Scholar
19. Neave, Dobson, Joyce, Zhang, Appl. Phys. Lett. Vol.47(2) p. 100 (1995).Google Scholar
20. Hull, R., Fischer-Colbrie, M., Appl. Phys. Lett., Vol. 50(13) p. 851 (1987).Google Scholar
21. Bartenlian, Bisaro, Olivier, Hirtz, Pitanalm Meddeb, Rochet, Appl. Surf. Sci., Vol.56–58, p. 589 (1992).Google Scholar
22. Woolf, R., Westwood, B., Williams, C., Journ. Cryst. Growth, Vol. 100, p. 635.Google Scholar
23. Davis, L., McDonald, N., Palmberg, P., Riach, G., Weber, R., Handbook of Auger Electron Spectroscopy, 2 Ed., Perkin-Elmer Corp., Eden Prarie, MN., (1978).Google Scholar
24. 24. Sze, S., Physics of Semiconductor Devices, Second Edition, John Wiley and Sons, New York, NY, p. 117 (1981).Google Scholar
25. Chua, C., Thornton, R., Treat, D., Kneissl, M., Dunnrowicz, C., Appl. Phys. Lett. Vol.72(9), p. 1001 (1998).Google Scholar
26. Nabarro, F. R. N., The Theory of Crystal Dislocations, Oxford University Press, London, (1967).Google Scholar
27. The quantitative values reported here are the average value of the five measurements, each within an agreement of plus-or-minus 3 %.Google Scholar
28. Eaglesham, D., Journ. Appl. Phys. Vol. 77, p.3597. (1995).Google Scholar