Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:31:44.115Z Has data issue: false hasContentIssue false

Strain Relaxation During Heteroepitaxy on Twist-Bonded Thin Gallium Arsenide Substrates

Published online by Cambridge University Press:  10 February 2011

P. Kopperschmidt
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany, [email protected], [email protected]
S T. Senz
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany, [email protected], [email protected]
R. Scholz
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany, [email protected], [email protected]
G. Kästner
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany, [email protected], [email protected]
U. Gösele
Affiliation:
Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle, Germany, [email protected], [email protected]
P. Velling
Affiliation:
Gerhard-Mercator-Universität, Solid-State Electron. Dept., Lotharstraße 55, D-47057 Duisburg, Germany
W. Prost
Affiliation:
Gerhard-Mercator-Universität, Solid-State Electron. Dept., Lotharstraße 55, D-47057 Duisburg, Germany
F.-J. Tegude
Affiliation:
Gerhard-Mercator-Universität, Solid-State Electron. Dept., Lotharstraße 55, D-47057 Duisburg, Germany
V. Gottschalch
Affiliation:
Universität Leipzig, Fakultät für Chemie und Mineralogie, D-04103 Leipzig, Germany
Get access

Abstract

We realized “compliant” substrates in the square centimeter range by twist-wafer bonding of an (100) GaAs handle wafer to another (100) GaAs wafer with a several nm thick epitaxially grown GaAs layer followed by an appropriate back-etch procedure. The twist angle between the two GaAs wafers was chosen between 4 and 15 degrees. The twisted layers were characterized by area scanned X-ray diffraction, optical and electron microscopy and atomic force microscopy. Occasionally we observed regions showing pinholes in the transferred thin twistbonded GaAs layer.

After epitaxial deposition of 300 nm InP and InGaAs films with different degrees of mismatch on these substrates, transmission electron microscopy revealed grains which are epitaxially oriented to either the substrate or the twist-bonded layer. The grain boundaries between the twisted and untwisted grains probably collect threading dislocations, thus reducing their density in the areas free of boundaries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974).Google Scholar
[2] Fitzgerald, E.A., Xie, Y.-H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.-J., and Weir, B.E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
[3] Powell, A.R., Iyer, S.S., and LeGoues, F.K., Appl. Phys. Lett. 64, 1856 (1994).Google Scholar
[4] Lo, Y.H., Appl. Phys. Lett. 59, 2311 (1991).Google Scholar
[5] Teng, D., and Lo, Y.H., Appl. Phys. Lett. 62, 43 (1993).Google Scholar
[6] Yang, Z., Guarin, F., Tao, I.W., Wang, W.I., and Iyer, S.S., J. Vac. Sci. Technol. B 13, 789 (1995).Google Scholar
[7] Cao, J., Pavlidis, D., Park, Y., Singh, J., and Eisenbach, A., J. Appl. Phys. 83, 3829 (1998).Google Scholar
[8] Yang, Z., Alperin, J., Wang, W.I., Iyer, S.S., Cuan, T.S., and Semedy, F., J. Vac. Sci. Technol. B 16, 1489 (1998).Google Scholar
[9] Mantl, S., Holländer, B., Liedtke, R., Mesters, S., Herzog, H.J., Kibbel, H., and Hackbarth, T., private comm.Google Scholar
[10] Ejeckam, F.E., Lo, Y.H., Subramanian, S., Hou, H.Q. and Hammons, B.E., Appl. Phys. Lett. 70, 1685 (1997).Google Scholar
[11] Ejeckam, F.E., Seaford, M.L., Lo, Y.H., Hou, H.Q. and Hammons, B.E., Appl. Phys. Lett. 71, 776 (1997).Google Scholar
[12] Zhu, Z.H., Zhou, R., Ejeckam, F.E., Zhang, Z., Zhang, J., Greenberg, J., Lo, Y.H., Hou, H.Q., and Hammons, B.E., Appl. Phys. Lett. 72, 2598 (1998).Google Scholar
[13] Bruel, M., Electron. Lett. 31, 1201 (1995).Google Scholar
[14] Tong, Q.-Y., Scholz, R., Göisele, U., Lee, T.-ZH., Huang, L.-J., Chao, Y.-L., and Tan, T.Y., Appl. Phys. Lett. 72, 49 (1998).Google Scholar
[15] Jalaguier, E., Aspar, B., Pocas, S., Michaud, J.F., Zussy, M., Papon, A.M., and Bruel, M., Electron. Lett. Vol.34, 408 (1998).Google Scholar
[16] Kopperschmidt, P., Senz, St., Scholz, R., and Gibsele, U., Appl. Phys. Lett. (in press).Google Scholar
[17] Tan, T.Y. and Gisele, U., Appl. Phys. A 64, 631 (1997).Google Scholar
[18] Kästner, G., Gbsele, U., and Tan, T.Y., Appl. Phys. A 66, 13 (1998).Google Scholar
[19] Yablonovitch, E., Gmitter, T., Florez, L.T., and Harbison, J.P., Appl. Phys. Lett. 56, 2419 (1990).Google Scholar
[20] Kopperschmidt, P., Kästner, G., Senz, S., Hesse, D., and Gösele, U., Appl. Phys. A 64, 533 (1997).Google Scholar
[21] Kopperschmidt, P., Senz, St., Kästner, G., Hesse, D., and Gösele, U.M., Appl. Phys. Lett. 72, 3181 (1998).Google Scholar
[22] Patriarche, G., Jeann~s, F., Oudar, J.-L., and Glas, F., J. Appl. Phys. 82, 4892 (1997).Google Scholar
[23] Sugiura, L., Appl. Phys. Lett. 70, 1317 (1997).Google Scholar
[24] Jain, S.C., Harker, A.H., and Cowley, R.A., Phil. Mag. A 75, 1461 (1997).Google Scholar