Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T22:55:43.936Z Has data issue: false hasContentIssue false

Growth and Characterization of GaN and ALxGA1−xN Thin Films Achieved Via Lateral- and/or Pendeo-Epitaxial Overgrowth on 6H-SIC(0001) Substrates

Published online by Cambridge University Press:  10 February 2011

Robert F. Davis
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27965
O-H. Nam
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27965
T. S. Zheleva
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27965
M. D. Bremser
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27965
K. J. Linthicum
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27965
T. Gehrke
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27965
P. Rajagopal
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27965
D. B. Thomson
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27965
E. P. Carlson
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27965
Get access

Abstract

Discrete and coalesced monocrystalline layers of lateral- and pendeo-epitaxially grown GaN and AlxGal−xN layers originating from GaN stripes deposited within windows contained in SiO2 masks or from side walls of GaN seed structures containing SiNx top masks have been grown via organometallic vapor phase deposition on GaN/AlN/6H-SiC(0001) substrates. Multilayer heterostructures of GaN and AlxGal−N were also achieved. Scanning and transmission electron microscopies and atomic force microscopy were used to evaluate the microstructures, the type and distribution of dislocations and the surface roughness of the resulting films. The extent and microstructural characteristics of the laterally overgrown GaN regions were a strong function of stripe orientation and temperature. These regions contained a low density of dislocations. The RMS roughness of the (1120) sidewall plane of the pendeoepitaxial structures was approximately 0.100 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Underwood, R., Kapolnek, D., Keller, B., Keller, S., Denbaars, S., and Mishra, U., Topical Workshop on Nitrides, Nagoya, Japan, September, 1995.Google Scholar
2. Kato, Y., Kitamura, S., Hiramatsu, K., and Sawaki, N., J. Cryst. Growth, 144, 133 (1994).Google Scholar
3. Nam, O., Bremser, M., Ward, B., Nemanich, R., and Davis, R., Mat.Res. Soc. Symp. Proc., 449, 107 (1997).Google Scholar
4. Nam, O., Bremser, M., Ward, B., Nemanich, R., and Davis, R., Jpn.J. Appl. Phys., Part 1 36, L532 (1997).Google Scholar
5. Sakai, A., Sunakawa, H., and Usui, A., Appl. Phys. Lett., 73, 481 (1998).Google Scholar
6. Marchand, H., Wu, X., Ibbetson, J., Fini, P., Kozodoy, P., Keller, S., Speck, J., Denbaars, S., and Mishra, U., Appl. Phys. Lett., 73, 747 (1998).Google Scholar
7. Zheleva, T., Nam, O., Bremser, M., and Davis, R., Appl. Phys. Lett., 71, 2472 (1997).Google Scholar
8. Nam, O., Zheleva, T., Bremser, M., and Davis, R., Appl. Phys. Lett., 71, 2638 (1997).Google Scholar
9. Zhong, H., Johnson, M., McNulty, T., Brown, J., Cook, J. Jr., Schezina, J., Materials Internet Journal, Nitride Semiconductor Research, 3, 6, (1998).Google Scholar
10. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamanda, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M., and Chocho, K., Proc. of the 2nd Int. Conf. On Nitride Semicond., Tokushima, Japan, October, 1997.Google Scholar
11. Zheleva, T., Smith, S., Thomson, D., Linthicum, K., Gerhke, T., Rajagopal, P., Davis, R., (submitted to the Journal of Electronic Materials).Google Scholar
12. Linthicum, K. J., Gehrke, T., Thomson, D., Carlson, E., Rajagopal, P., Smith, T., Davis, R., (submitted to Applied Physics Letters).Google Scholar
13. Gehrke, T., Linthicum, K. J., Thomson, D.B., Rajagopal, P., Batchelor, A. D. and Davis, R. F., submitted for consideration for publication in the Vol.443 Symposium D, Materials Research Society Fall Meeting, 1998.Google Scholar
14. Linthicum, K. J., Gehrke, T.,, Thomson, D.B., Tracy, K. M., Carlson, E. P., Smith, T. P., Zheleva, T. S., Zorman, C. A., Mechregany, M. and Davis, R. F., submitted for consideration for publication in the Vol. 443 Symposium D, Materials Research Society Fall Meeting, 1998.Google Scholar
15. Thomson, D.B., Gehrke, T., Linthicum, K. J., Rajagopal, P., Hartlieb, P., Zheleva, T. S. and Davis, R. F., submitted for consideration for publication in the Vol. 443 Symposium D, Materials Research Society Fall Meeting, 1998.Google Scholar
16. Zheleva, T. S., Thomson, D.B., Smith, S., Rajagopal, P., Linthicum, K. J., Gehrke, T., and Davis, R. F., submitted for consideration for publication in the Vol.443 Symposium D, Materials Research Society Fall Meeting, 1998.Google Scholar
17. Weeks, T., Bremser, M., Ailey, K., Carlson, E., Perry, W., and Davis, R., Appl. Phys. Lett., 67, 401 (1995).Google Scholar