No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
We demonstrate a new approach to the growth of dislocation free lattice-mismatched materials on GaAs substrates using Al2O3 interlayers obtained by lateral oxidation of AlAs. This is achieved by generating relaxed low threading dislocation density InGaAs templates which are mechanically supported but epitaxially decoupled from the host GaAs substrate. This process uses the phenomena of relaxation of strained coherent hypercritical thickness (h > hcritical,) layer in direct contact with an oxidizing Al-containing semiconductor (i.e. AlAs or AlGaAs). 5000 Å In0.11Ga0.89As layers were then grown on the In0.2 Ga0.8As/Al2O3/GaAs template which acts as a pseudo-substrate (lattice-engineered substrate). The epitaxial layers are partially relaxed and have extremely smooth surface morphology. Further TEM micrographs of these epitaxial layers show no misfit dislocations or related localized strain fields at the In0.2Ga0.8As/Al2O3 interface. The absence of misfit dislocations or local strain contrast at the In0.2Ga0.8As/Al2O3 interface is attributed to both reactive material removal during the oxidation process and the porous nature of the oxide itself. We propose that the strain relaxation in In0.3Ga0.7As is enhanced due to the absence of misfit dislocations at the In0.2Ga0.8As/A12O3 interface.