Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:00:12.107Z Has data issue: false hasContentIssue false

Growth of Ain on Si(111) by Plasma-Assisted Molecular Beam Epitaxy: Application to Surface Acoustic Wave Devices

Published online by Cambridge University Press:  10 February 2011

H. P. D. Schenk*
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universitit Jena, Max-Wien-Platz 1, 07743 Jena, Germany
G. D. Kipshidze
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universitit Jena, Max-Wien-Platz 1, 07743 Jena, Germany Ioffe Physico-Technical Institute, Russian Academy of Science, 26 Polytekhnicheskaya, St. Petersburg 194021, Russia
M. Weihnacht
Affiliation:
Institut für Festkbrper- und Werkstofforschung Dresden e. V., Postfach 27 00 16, 01171 Dresden, Germany
M. Weihnach
Affiliation:
Institut für Festkbrper- und Werkstofforschung Dresden e. V., Postfach 27 00 16, 01171 Dresden, Germany
U. Kaiser
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universitit Jena, Max-Wien-Platz 1, 07743 Jena, Germany
J. Schulze
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universitit Jena, Max-Wien-Platz 1, 07743 Jena, Germany
Wo. Richter
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universitit Jena, Max-Wien-Platz 1, 07743 Jena, Germany
*
*CRHEA-CNRS, Rue Bernard Gr6gory, Sophia Antipolis, 06560 Valbonne, France, Fax: +33.493.95 83 61, Email: [email protected]
Get access

Abstract

Epitaxial wurtzite aluminum nitride (AIN) films have been grown on (111) oriented silicon substrates by plasma-assisted solid source molecular beam epitaxy (MBE). The growth has been performed in the two-dimensional (2D) growth mode. Occuring surface reconstructions have been monitored by reflection of high-energy electron diffraction (RHEED). The films have been characterized by atomic force microscopy (AFM) and transmission electron microscopy (TEM). 2D grown films exhibit atomically smooth surfaces, are singlecrystalline and void of oriented domains. High-resolution (HR) TEM micrographs of the heterointerface show the presence of an interfacial atomic arrangement where (5:4) unit cells coincide along the AIN[2110]/Si[110] direction.

Surface acoustic wave (SAW) properties of MBE-grown AIN(0001)/Si(ll1) have been studied for the first time. The AIN film exhibits very good piezoelectricity. The SAW time response indicates low scattering of the waves during their propagation. An electromechanical coupling coefficient (EMC) of 0.07% has been measured for the present interdigital transducer (IDT) geometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Tsubouchi, K., Mikoshiba, N., IEEE Trans. Sonics Ultrason. SU–32, 634 (1985).Google Scholar
[2] for a recent review: Shimada, K., Sota, T., Suzuki, K., J. Appl. Phys. 84, 4951 (1998).Google Scholar
[3] O'Clock, G. D., Jr., Duffy, M. T., Appl. Phys. Lett. 23, 55 (1973).Google Scholar
[4] Liu, J. K., Lakin, K. M., Wang, K. L., J. Appl. Phys. 46, 3703 (1975).Google Scholar
[5] Yoshida, S., Misawa, S., Gonda, S., Appl. Phys. Lett. 42, 427 (1983).Google Scholar
[6] Guha, S., Bojarczuk, N. A., Appl. Phys. Lett. 73, 1487 (1998).Google Scholar
[7] Bidnyk, S., Little, B. D., Cho, Y. H., Krasinski, J., Song, J. J., Yang, W., McPherson, S. A., Appl. Phys. Lett. 73, 2242 (1998).Google Scholar
[8] Callaghan, M. P., Patterson, E., Richards, B. P., Wallace, C. A., J. Crystal Growth 22, 85 (1974).Google Scholar
[9] Shuskus, A. J., Reeder, T. M., Paradis, E. L., Appl. Phys. Lett. 24, 155 (1974).Google Scholar
[10] Yoshida, S., Misawa, S., Fujii, Y., Hayakawa, H., Gonda, S., Itoh, A., J. Vac. Sci. & Technol. 16, 990 (1979).Google Scholar
[11] Okano, H., Tanaka, N., Takahashi, Y., Tanaka, T., Shibata, K., Nakano, S., Appl. Phys. Lett. 64, 166 (1994); H. Okano, Y. Takahashi, T. Tanaka, K. Shibata, S. Nakano, Jpn. J. Appl. Phys. 31, 3446 (1992).Google Scholar
[12] Kaya, K., Takahashi, H., Shibata, Y., Kanno, Y., Hirai, T., Jpn. J. Appl. Phys. 36, 2837 (1997).Google Scholar
[13] Suetsugu, T., Yamazaki, T., Tomabechi, S., Wada, K., Masu, K., Tsubouchi, K., Appl. Surf. Sci. 117/118, 540 (1997).Google Scholar
[14] Deger, C., Born, E., Angerer, H., Ambacher, O., Stutzmann, M., Hornsteiner, J., Riha, E., Fischerauer, G., Appl. Phys. Lett. 72, 2400 (1998).Google Scholar
[15] Hickernell, F. S., Liaw, H. M., in Proc. IEEE 9th Int. Symp. Appl. Ferroelectrics, Aug. 7–10, 994, p. 543 (1995).Google Scholar
[16] Yong, Y.-J., Lee, J.-Y., J. Vac. Sci. & Technol. A 15, 390 (1997).Google Scholar
[17] Pearce, L. G., Gunshor, R. L., Pierret, R. F., in Proc. 1981 IEEE Ultrason. Symp., p. 381 (1981).Google Scholar
[18] Schenk, H. P. D., Diploma Thesis, Friedrich-Schiller-Universität Jena, 1998.Google Scholar
[19] Mtinch, W., Semiconductor surfaces and interfaces (Springer Verlag, Berlin, 1993), p. 257.Google Scholar
[20] Schenk, H. P. D., Kipshidze, G. D., Kaiser, U., Fissel, A., Schulze, J., Richter, Wo., J. Crystal Growth; in print.Google Scholar
[21] Meng, W. J., Sell, J. A., Perry, T. A., Rehn, L. E., Baldo, P. M., J. Appl. Phys. 75, 3446 (1994); and references therein.Google Scholar
[22] Shim, K.-H., Myong, J., Gluschenkov, O., Kim, K., Robinson, I. K., Jpn. J. Appl. Phys. 37, L313 (1998).Google Scholar
[23] Markov, I. V., Crystal growth (World Scientific, Singapore, 1995), p. 68.Google Scholar
[24] Plessis, J. C. du, Merwe, J. H. van der, Philos. Mag. 11, 43 (1965).Google Scholar
[25] Northrup, J. E., Felice, R. Di, Neugebauer, J., Phys. Rev. B 55, 13787 (1997).Google Scholar
[26] Pastrnák, J., Roskovcová, L., Phys. Stat. Sol. 7, 331 (1964).Google Scholar
[27] Slack, G. A., McNelly, T. F., J. Crystal Growth 34, 263 (1976).Google Scholar