Measurement of the curvature induced in a wafer (or other flat plate) by the stress in a thin film has long been used as a convenient and accurate technique for the determination of the stress. Numerous improvements over the years have led to instruments that provide simple and rapid measurements of stress as a function of the time and temperature for any desired thermal history. A computer controlled instrument using laser scanning will be briefly described and its capabilities and limitations discussed.
Applications of the technique to a variety of thin film materials will be discussed. In addition to the effects of differences in thermal expansion, stresses associated with various deposition techniques, gain or loss of material, phase transformations and flow will be considered. In aluminum based systems, themal expansion, plastic flow and phase transformation play major roles. Refractory metals show, in addition, large stresses associated with the deposition process. In inorganic dielectric systems thermal expansion effects are usually relatively small; deposition effects and the gain or loss of material are the dominant effects. Silica based glasses formed by chemical vapor deposition, for example, show large stress changes due to gain or loss of water, and plasma deposited silicon nitride films show large effects associated with hydrogen. Overall, determination of the stress as a function of time and temperature is a valuable part of the evaluation of a thin film material for use in a VLSI device.