Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:03:13.938Z Has data issue: false hasContentIssue false

Mechanics of Elastic Dislocations in Strained Layer Structures

Published online by Cambridge University Press:  22 February 2011

L. B. Freund
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
A. Bower
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
J. C. Ramirez
Affiliation:
Division of Engineering, Brown University, Providence, RI 02912
Get access

Abstract

Application of the elastic continuum theory of dislocations to modeling of phenomena associated with elastic strain relaxation in strained layer epitaxial heterostructures is discussed. The concept of critical thickness for onset of strain relaxation in a strained epitaxial layer is first reviewed, and some extensions to periodic arrays of dislocations and to multiple layers are described. Then, two issues are addressed that arise when the assumptions underlying the critical thickness concept are not met. One issue concerns the nucleation of dislocations at the growth surface of an epitaxial film, particularly the influence of surface irregularities on the activation energy for surface nucleation. A second issue concerns the kinetics of glide of a threading dislocation as it lays down an interface misfit dislocation when the layer thickness exceeds the critical thickness. A generalized driving force for the glide process is defined, and a relationship between this force and the glide speed is proposed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matthews, J. W., Mader, S. and Light, T. B., J. Appl. Phys. 41, 3800 (1970).Google Scholar
2. Freund, L. B., J. Appl. Mech. 54, 553 (1987).10.1115/1.3173068Google Scholar
3. Gourley, P. L., Fritz, I. J. and Dawson, L. R., Appl. Phys. Lett. 52, 377 (1988).10.1063/1.99471CrossRefGoogle Scholar
4. Petruzzello, J., Greenberg, B. L., Cammack, D. A. and Dalby, R., J. Appl. Phys. 63, 2299 (1988).10.1063/1.341044Google Scholar
5. Matthews, J. W. and Blakeslee, A. E., J. Crystal Growth 27, 118 (1974).Google Scholar
6. Hull, R., Bean, J. C., Cerdeira, F., Fiory, A. T. and Gibson, J. M., Appl. Phys. Lett. 48, 56 (1986).Google Scholar
7. Hirth, J. P. and Lothe, J. Theory of Dislocations, (McGraw-Hill, 1968).Google Scholar
8. Matthews, J. W., in Epitaxial Growth, Part B, edited by Matthews, J. W. (Academic Press, 1975), p. 560.Google Scholar
9. Ling, C.-B., J. Math. Phys. 26, 284 (1947).10.1002/sapm1947261284CrossRefGoogle Scholar
10. Comninou, M. and Dundurs, J., J. Elasticity 5, 203 (1976).10.1007/BF00126985Google Scholar
11. Bean, J. C., Feldman, L. C., Fiory, A. T., Nakahara, S. and Robinson, I. K., J. Vac. Sci. Tech. A2, 936 (1984).Google Scholar
12. Hull, R., Bean, J. C., Werder, D. J. and Leibenguth, R. E., Appl. Phys. Lett. 52, 1605 (1988).10.1063/1.99055Google Scholar
13. Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett. 51, 1325 (1987).Google Scholar
14. Tsao, J. Y. and Dodson, B. W., Appl. Phys. Lett. 53, 848 (1988).CrossRefGoogle Scholar
15. Alexander, H., in Dislocations in Solids, edited by Nabarro, F. R. N. (Elsevier, New York, 1986), Vol.7, p. 113.Google Scholar
16. Rice, J. R., J. Appl. Mech. 37, 728 (1970).10.1115/1.3408603Google Scholar
17. Muskhelishvili, N. I., Some Basic Problems in the Mathematical Theory of Elasticity, translated by Radok, J. R. M. (Noordhoff, Groningen, 1953).Google Scholar