ZnO is known to produce a wide variety of nanostructures that have enormous scope for optoelectronic applications. Using an aqueous electrochemical deposition technique, we are able to tightly control a wide range of deposition parameters (Zn2+ concentration, temperature, potential, time) and hence the resulting deposit morphology. By simultaneously conducting synchrotron x-ray absorption spectroscopy (XAS) experiments during the deposition, we are able to directly monitor the growth rates of the nanostructures, as well as providing direct chemical speciation of the films. In situ experiments such as these are critical to understanding the nucleation and growth of such nanostructures.
Recent results from in situ XAS synchrotron experiments demonstrate the growth rates as a function of potential and Zn2+ concentration. These are compared with the electrochemical current density recorded during the deposition, and the final morphology revealed through ex situ high resolution electron microscopy. The results are indicative of two distinct growth regimes, and simultaneous changes in the morphology are observed.
These experiments are complemented by modelling the growth of the rods in the transport-limited case, using the Nernst-Planck equations in 2 dimensions, to yield the growth rate of the volume, length, and radius as a function of time.