Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T06:17:24.103Z Has data issue: false hasContentIssue false

Optimizing Growth Rates and Thermal Stability of Silver Nanowires

Published online by Cambridge University Press:  01 February 2011

Byron D. Gates
Affiliation:
[email protected], Simon Fraser University, Department of Chemistry, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada, 778-782-8066, 604-291-3765
Byron D. Gates
Affiliation:
[email protected], Simon Fraser University, Department of Chemistry, 8888 U niversity Drive, Burnaby, BC, V5A 1S6, Canada
Get access

Abstract

There are multiple solution-phase approaches to synthesizing nanowires, yet some aspects of these syntheses are not well understood. Solution-phase methods are attractive for the ease of scaling to large quantities, which is a necessary step for applications utilizing nanowires. However, insight into the surface chemistry and mechanism of growth of the nanowires is essential for increasing the yield of nanowires. An improved synthesis of silver nanowires is presented along with insight into the mechanism of growth and stabilization of the nanowires. The techniques from this modified synthesis could be extended to a number of other solution-phase procedures to increase the yield of nanostructures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mayers, B., Xia, Y., Adv. Mater. 14, 279 (2002).Google Scholar
2. Gates, B. D., Mayers, B., Cattle, B., Xia, Y., Adv. Funct. Mater. 12, 219 (2002).Google Scholar
3. Sun, Y., Gates, B. D., Mayers, B., Xia, Y., Nano Lett. 2, 165 (2002).Google Scholar
4. Milliron, D. J., Hughes, S. M., Cui, Y., Manna, L., Li, J., Wang, L.-W., Alivisatos, A. P., Nature 430, 190 (2004).Google Scholar
5. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B. D., Yin, Y., Kim, F., Yan, H., Adv. Mater. 15, 353 (2003).Google Scholar
6.“Properties of the Elemental Inorganic Compounds,” CRC Handbook of Chemistry and Physics, ed. Lide, D. R. (Taylor and Francis, 2007) (Internet version).Google Scholar
7. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., Whitesides, G. M., Chem. Rev. 105, 1103 (2005).Google Scholar
8. Chen, C., Wang, L., Jiang, G., Yang, Q., Wang, J., Yu, H., Chen, T., Wang, C., Chen, X., Nanotechnology 17, 466 (2006).Google Scholar
9. Wiley, B., Herricks, T., Sun, Y., Xia, Y., Nano Lett. 4, 1733 (2004).Google Scholar
10. Wiley, B., Sun, Y., Xia, Y., Langmuir 21, 8077 (2005).Google Scholar
11. Blin, B., Fievet, F., Beaupere, D., Figlarz, M., New J. Chem. 13, 67 (1989).Google Scholar
12. Silvert, P. Y., Urbina, R. H., Elhsissen, K. T., J. Mater. Chem. 7, 293 (1997).Google Scholar
13. Sun, Y., Mayers, B., Herricks, T., Xia, Y., Nano Lett. 3, 955 (2003).Google Scholar