Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T15:44:53.041Z Has data issue: false hasContentIssue false

Effects of Chirality and Diameter on Electron Transport Properties in Individual Semiconducting Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

M. Zahed Kauser
Affiliation:
[email protected], University of Minnesota, Electrical and Computer Engineering, 200 Union St. SE., Room 4-174, Minneapolis, MN, 55455, United States, 612-624-8545
P. Paul Ruden
Affiliation:
[email protected], University of Minnesota, Electrical and Computer Engineering, 200 Union St. SE., Room 4-174, Minneapolis, MN, 55455, United States
Get access

Abstract

We report on the effects of chirality and diameter on the electron transport properties in individual semiconducting, single wall carbon nanotubes. The Boltzmann transport equation is solved indirectly by the Ensemble Monte Carlo method and directly by Rode's iterative technique. Results show considerable effects of chirality and group on band structure and transport properties of tubes with small diameters. However the effects of chirality and group become negligible for tubes with large diameters. Diameter affects these properties more strongly than either chirality or group.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Graham, A.P., Duesberg, G.S., Hoenlein, W., Kreupl, F., Liebau, M., Martin, R., Rajasekharan, B., Pamler, W., Seidel, R., Steinhoegl, W., and Unger, E., Appl. Phys. A 80, 1141 (2005).Google Scholar
2. Misewich, J.A., Martel, R., Avouris, P., Tsang, J.C., Heinze, S., and Tersoff, J., Science 300, 783 (2003).Google Scholar
3. Perebeinos, V., Tersoff, J., and Avouris, P., Phys. Rev. Lett. 94, 086802 (2005).Google Scholar
4. Pennington, G. and Goldsman, N., Phys. Rev. B 68, 045426 (2003).Google Scholar
5. Verma, A., Kauser, M.Z., and Ruden, P.P., J. Appl. Phys. 97, 114319 (2005).Google Scholar
6. Verma, A., Kauser, M.Z., and Ruden, P.P., Appl. Phys. Lett. 87, 123101 (2005).Google Scholar
7. Kauser, M.Z., Verma, A., and Ruden, P.P., Physica E 34, 666 (2006).Google Scholar
8. Kauser, M.Z., Verma, A., and Ruden, P.P., in Organic and Inorganic Nanotubes -- From Molecular to Submicron Structures, edited by Nielsch, K., Hayden, O., Ihara, H., Wang, D. (Mater. Res. Soc. Symp. Proc. 922E, Warrendale, PA, 2006), 0922–U07.Google Scholar
9. Kauser, M. Z. and Ruden, P.P., Appl. Phys. Lett. 89, 162104 (2006).Google Scholar
10. Saito, R., Dresselhaus, M.S., and Dresselhaus, G., Physical properties of carbon nanotubes, Imperial College Press, London (1998).Google Scholar
11. Kauser, M. Z. and Ruden, P.P., to be published in J. Appl. Phys.Google Scholar
12. McEuen, P.L., Fuhrer, M.S., and Park, H., IEEE Transactions on Nanotechnology 1, 78 (2002).Google Scholar