Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T15:21:40.478Z Has data issue: false hasContentIssue false

Modeling the Carrier Mobility in Nanowire Channel FET

Published online by Cambridge University Press:  01 February 2011

Werner Prost
Affiliation:
[email protected], University Duisburg-Essen, Solid-State Electronics, Lotharstr. 57, Duisburg, 47057, Germany, 49 203 379 4607, 49 203 379 3400
Kai Blekker
Affiliation:
[email protected], University Duisburg-Essen, Lotharstr. 55, Duisburg, 47057, Germany
Quoc-Thai Do
Affiliation:
[email protected], University Duisburg-Essen, Lotharstr. 55, Duisburg, 47057, Germany
Ingo Regolin
Affiliation:
[email protected], University Duisburg-Essen, Lotharstr. 55, Duisburg, 47057, Germany
Sven Müller
Affiliation:
[email protected], University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
Daniel Stichtenoth
Affiliation:
[email protected], University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
Katharina Wegener
Affiliation:
[email protected], University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
Carsten Ronning
Affiliation:
[email protected], University of Göttingen, Friedrich-Hund-Platz 1, Göttingen, 37077, Germany
Franz-Josef Tegude
Affiliation:
[email protected], University Duisburg-Essen, Lotharstr. 55, Duisburg, 47057, Germany
Get access

Abstract

We report on the extraction of carrier type, and mobility in semiconductor nanowires by adopting experimental nanowire field-effect transistor device data to a long channel MISFET device model. Numerous field-effect transistors were fabricated using n-InAs nanowires of a diameter of 50 nm as a channel. The I-V data of devices were analyzed at low to medium drain current in order to reduce the effect of extrinsic resistances. The gate capacitance is determined by an electro-static field simulation tool. The carrier mobility remains as the only parameter to fit experimental to modeled device data. The electron mobility in n-InAs nanowires is evaluated to µ = 13,000 cm2/Vs while for comparison n-ZnO nanowires exhibit a mobility of 800 cm2/Vs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wagner, R. S. and Ellis, W.C., Appl. Phys. Lett., 4, 8990 (1964).Google Scholar
2. Bryllert, T., Wernersson, L.-E., Froberg, L.E., Samuelson, L., IEEE Electron Device Letters 27 323325 (2005).Google Scholar
3. Chang, P.-C., Fan, Z., and Chien, C.-J., Stichtenoth, D., Ronning, C., Lu, J.G.; Appl. Phys. Lett. 89, 133113 (2006).Google Scholar
4. Ju, S., Lee, K., Yoon, M.-H., Facchetti, A., Marks, T.J., and Janes, D.B., Nanotechnology 18 155201 (2007).Google Scholar
5. Wang, D., Wang, Q., Javey, A., Tu, R., Daia, H., Kim, H., McIntyre, P.C., Krishnamohan, T., Saraswat, K. C., Applied Physics Letters, 83 2432 (2003).Google Scholar
6. Do, Q.-T., Regolin, I., Matiss, A., Khorenko, V., Prost, W., Tegude, F.-J.; IEEE Proc. 18th InP and Related Materials Conf. 436 (2006).Google Scholar
8. Borchers, C., Müller, S.; Stichtenoth, D., Schwen, D., Ronning, C.; J. Physical Chemistry B 110 1656–60 (2006).Google Scholar
9. Wiersch, A., Heedt, C., Schneiders, S., Tilders, R., Buchali, F., Kuebart, W., Prost, W., Tegude, F.-J.; J. Non-Crystalline Solids, 187 334 (1995).Google Scholar
10. Matsuzaki, H., Maruyama, T., Koasugi, T., Takahashi, H., Tokumitsu, M., Enoki, T.; IEEE Trans. Electron Devices 54, 378 (2007).Google Scholar
11. Sze, S.M.; Physics of Semiconductor Devices, John Willey and Sons, 2001.Google Scholar
12. Bilgic, W.; Universität Duisburg-Essen, priv. communication 2006.Google Scholar