Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:40:50.801Z Has data issue: false hasContentIssue false

Alternative Catalysts For Si-Technology Compatible Growth Of Si Nanowires

Published online by Cambridge University Press:  01 February 2011

Francesca Iacopi
Affiliation:
[email protected], IMEC, SPDT, Kapeldreef 75, Leuven, 3001, Belgium
Philippe M Vereecken
Affiliation:
[email protected], IMEC, SPDT, Kapeldreef 75, Leuven, 3001, Belgium
Marc Schaekers
Affiliation:
[email protected], IMEC, SPDT, Kapeldreef 75, Leuven, 3001, Belgium
Matty Caymax
Affiliation:
[email protected], IMEC, SPDT, Kapeldreef 75, Leuven, 3001, Belgium
Nele Moelans
Affiliation:
[email protected], Katholieke Universiteit Leuven, Metallurgy and Materials Engineering, Leuven, 3001, Belgium
Bart Blanpain
Affiliation:
[email protected], Katholieke Universiteit Leuven, Metallurgy and Materials Engineering, Leuven, 3001, Belgium
Christophe Detavernier
Affiliation:
[email protected], Universiteit Gent, Solid State Physics, Gent, 9000, Belgium
Jan D'Haen
Affiliation:
[email protected], IMOMEC, Hasselt, 3590, Belgium
Hefin Griffiths
Affiliation:
[email protected], Oxford Instruments, Plasma Technology, Bristol, BS49 4AP, United Kingdom
Get access

Abstract

The use of Au nanoparticles as catalysts for growth of Si nanowires poses fundamental reliability concerns for applications in Si semiconductor technology. In this work we show that the choice of catalysts can be broadened when the need for catalytic precursor dissociation is eliminated. However, the requirements for selective deposition in a gas phase transport -limited regime become stringent. When competing deposition of amorphous Si can bury the particles faster than the incubation time for VLS growth, no nanowire growth will be initiated. We show that the use of a catalyst such as In, already in a liquid form at the growth temperature, is effective. Therefore, the choice of VLS catalysts among the low melting point metals from the III, IV and V groups is suggested.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Wagner, R.S., Ellis, W.C., Applied Physics Letters 4 (15), 8990 (1964).Google Scholar
[2] Givargizov, E.I., Journal of Crystal Growth 31, 2030 (1975).Google Scholar
[3] Bootsma, G.A., Gassen, H.J., J.Crystal Growth 10, 223234 (1971).Google Scholar
[4] Qi, C., oncher, R G., Solanki, R., Jordan, J., Nanotechnology 18, 075302 (2007).Google Scholar
[5] Sun, X.H., Didychuk, C., Sham, T.K., Wong, N.B., Nanotechnology 17(12), 29252930 (2006).Google Scholar
[6] Johansson, J., Karlsson, L.S., Svensson, C.P.T., Martensson, T., Wacaser, B.A., Deppert, K., Samuelson, L., Seifert, W., Nature Materials 5(7), 574580 (2006).Google Scholar
[7] Tang, Z.Y., Kotov, N.A., Giersig, M., Science 297 (5579), 237240 (2002).Google Scholar
[8] Sunkara, M.K., Sharma, S., Miranda, R., Lian, G., Dickey, E.C., Appl. Phys. Lett. 79(10), 15461548 (2001).Google Scholar
[9] Kalache, B., Cabarrocas, P. Roca i, Morral, A.Fontcuberta i, J.J.Appl.Phys. 45(7), L190–L193 (2006).Google Scholar
[10] Wang, Y., Schmidt, V., Senz, S., Göele, U., Nature Nanotechnology 1, 186189 (2006).Google Scholar
[11] Kamins, T.I., Williams, R.S., Basile, D.P., Hesjedal, T., Harris, J.S., J.Appl.Phys 89(2), 10081016 (2001).Google Scholar
[12] Sze, S.M., Physics of Semiconductor Devices, Wiley Interscience, New York, 1981.Google Scholar
[13] Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L.F., Forchel, A., Scheffler, M., Riess, W., Ohlsson, B.J., Gösele, U., Samuelson, L., Materials Today 9(10), 2835 (2006).Google Scholar
[14] Foster, D.W., Learn, A.J., Kamins, T.I., J.Vac.Sci.Technol.B 4, p.1182, (1986).Google Scholar
[15] Duan, H.L., Zaharias, G.A., Bent, S.F., Mat.Res.Soc.Symp.Proc. Vol.715, 2130 (2002).Google Scholar
[16] Massalski, T.B., Binary alloy phase diagrams, 2 ed. - Metals Park (Ohio): American society for metals, 1990.Google Scholar
[17] Layadi, N., Cabarrocas, P. Roca i, B.Drevillon, Solomon, I., Phys.Rev.B 52(7), 51365143 (1995).Google Scholar
[18] Zhou, J.-H., Ikuta, K., Yasuda, T., Umeda, T., Yamasaki, S., Tanaka, K., Appl.Phys.Lett. 71(11), 15341536 (1997).Google Scholar
[19] Vasek, J.E., Zhang, Z., Salling, C.T., Lagally, M.G., Phys.Rev.B 51(23), 1720717210 (1995).Google Scholar
[20] Dai, L., You, L.P., Duan, X.F., Lian, W.C., Qin, G.G., Physics Letters A 335(4), 304309 (2005).Google Scholar
[21] Du, Y., Chang, Y.A., Huang, B., Gong, W., Jin, Z., Xu, H., Yuan, Z., Liu, Y., He, Y., Xie, F.Y., Materials Science and Engineering A 363, 140151 (2003).Google Scholar
[22] Clement, T., Ingole, S., Ketharanathan, S., Drucker, J., Picraux, S.T., Appl.Phys.Lett 89, 163124 (2006).Google Scholar