Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-28T23:51:14.006Z Has data issue: false hasContentIssue false

Growth of Boron Nanowires by Chemical Vapor Deposition

Published online by Cambridge University Press:  01 February 2011

Li Guo
Affiliation:
[email protected], University of Cincinnati, Chemical and Materials Engineering, 2624 Clifton Ave, Cincinnati, OH, 45221, United States
Raj N. Singh
Affiliation:
[email protected], University of Cincinnati, Cincinnati, OH, 45221, United States
Get access

Abstract

Motivated by the extensive research on carbon nanotubes (CNTs), boron and its related nano-structures have attracted increasing interests for potential applications in nanodevices and nanotechnologies due to their extraordinary properties. B-related nanostructures are successfully grown on various substrates in a CVD process. The boron nanowires have diameters around 50-200 nanometers and lengths up to a few microns. The gas chemistry is monitored by the in-situ mass-spectroscopy, which helps to identify reactive species in the process. Modified vapor-solid growths as well as VLS growth mechanisms are proposed for the growth of these nanostructures. The role of the catalysts in the synthesis is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Werheit, H., in Electric Refractory Materials, ed. Y. Kumashiro (Marcle Dekker, Inc., 2000) pp.589-674.Google Scholar
2. Werheit, H., Laux, M., and Kuhlmann, U., Phys. Stat. Sol. B 176, 415 (1993).Google Scholar
3. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J., Nature 410, 63 (2001).Google Scholar
4. Eremets, M. I., Struzhkin, V. V., Mao, H., and Hemley, R. J., Science 293, 272 (2001).Google Scholar
5. Gaule, G. K., Ross, R.L., and Bloom, J. L., in Boron Volume2: Preparation, Properties and Applications, ed. Gaule, G. K. (Plenum Press, 1965) pp. 317338.Google Scholar
6. Dietz, W., and Helmberger, H., in Boron Volume 2: Preparation, Properties and Applications, ed. Gaule, G. K. (Plenum Press, 1965) pp. 301316.Google Scholar
7. Cao, L., Zhang, Z., Sun, L., Gao, C., He, M., Wang, Y., Li, Y., Zhang, X., Li, G., Zhang, J., and Wang, W., Adv. Mater. 13, 1701 (2001).Google Scholar
8. Otten, C. J., Lourie, O. R., Yu, M. F., Cowley, J. M., Dyer, M. J., Ruoff, R. S., and Buhro, W. E., J. Am. Chem. Soc. 124, 4564 (2002).Google Scholar
9. Wang, Z., Shimizu, Y., Sasaki, T., Kawaguchi, K., Kimura, K., and Koshizaki, N., Chem. Phys. Lett. 368, 663 (2003).Google Scholar
10. Wu, J. Z., Yun, S. H., Dibos, A., Kim, D. K., and Tidrow, M., Microelectronics J. 34, 463 (2003).Google Scholar
11. Jiang, J., Cao, M., Sun, Y., Wu, P., and Yuan, J., Appl. Phys. Lett. 88, 163107 (2006).Google Scholar
12. Guo, L., Singh, R.N., and Kleebe, H. J., Ceramic Transactions. 172, 79 (2006).Google Scholar
13. Guo, L., Singh, R. N., and Kleebe, H. J., J. Nanomaterials. 2006, 58237 (2006).Google Scholar
14. Guo, L., Singh, R. N., and Kleebe, H. J., CVD 12 (7), 448 (2006).Google Scholar
15. Weber, W., Thorpe, M. -F., J. Phys. Chem. Solids 36, 967 (1975).Google Scholar
16. Tallant, D.R., Aselage, T. L., Campbell, A. N., and Emin, D., Phys. Rev. B 40, 5649 (1989).Google Scholar
17. Boustani, I., Quandt, A., Hernandez, E., and Rubio, A., J. Chem. Phys. 110, 3176 (1999).Google Scholar
18. Desrosiers, R. M., Greve, D. W., Gellman, A. J., J. Vac. Sci. Technol. A 15, 2181 (1997).Google Scholar
19. Wagner, R. S., and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar