No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Recent research has shown that biologically inspired approaches to materials synthesis and self-assembly, hold promise of unprecedented atomic level control of structure and interfaces. In particular, the use of organic molecules to control the production of inorganic technological materials has the potential for controlling grain structure to enhance material strength; controlling facet expression for enhanced catalytic activity; and controlling the shape of nanostructured materials to optimize optical, electrical and magnetic properties. In this work, we use organic molecules to modify silver crystal shapes towards understanding the metal-organic interactions that lead to nanoparticle shape control.
Using in situ electrochemical AFM (EC-AFM) as an in situ probe, we study the influence of a cationic surfactant cetyltrimethylamminobromide (CTAB) on Ag growth during electrochemical deposition on Ag(100). The results show that the organic surfactant leads to a unique crystal growth habit. With CTAB present in the growth solution, Ag islands grow in a truncated pyramidal shape. To understand the shape evolution of the Ag islands, we utilize electron backscatter diffraction (EBSD) in conjunction with microscopic ellipsometry to characterize the facet-specific binding of the organic molecules to large-grained polycrystalline Ag substrates.