We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper, we investigate the distributive properties of square-free divisors over square-full integers. We first compute the mean value of the number of such divisors and obtain the error term which appears in its asymptotic formula. We then show that if one assumes the Riemann Hypothesis, then the omega estimate of such an error term can be drastically improved. Finally, we compute the omega estimate of the mean square of such an error term.
Assuming an averaged form of Mertens’ conjecture and that the ordinates of the non-trivial zeros of the Riemann zeta function are linearly independent over the rationals, we analyse the finer structure of the terms in a well-known formula of Ramanujan.
We find closed formulas for arbitrarily high mixed moments of characteristic polynomials of the Alternative Circular Unitary Ensemble, as well as closed formulas for the averages of ratios of characteristic polynomials in this ensemble. A comparison is made to analogous results for the Circular Unitary Ensemble. Both moments and ratios are studied via symmetric function theory and a general formula of Borodin-Olshanski-Strahov.
By examining two hypergeometric series transformations, we establish several remarkable infinite series identities involving harmonic numbers and quintic central binomial coefficients, including five conjectured recently by Z.-W. Sun [‘Series with summands involving harmonic numbers’, Preprint, 2023, arXiv:2210.07238v7]. This is realised by ‘the coefficient extraction method’ implemented by Mathematica commands.
We investigate the large values of the derivatives of the Riemann zeta function $\zeta (s)$ on the 1-line. We give a larger lower bound for $\max _{t\in [T,2T]}|\zeta ^{(\ell )}(1+{i} t)|$, which improves the previous result established by Yang [‘Extreme values of derivatives of the Riemann zeta function’, Mathematika68 (2022), 486–510].
We study approximations for the Lévy area of Brownian motion which are based on the Fourier series expansion and a polynomial expansion of the associated Brownian bridge. Comparing the asymptotic convergence rates of the Lévy area approximations, we see that the approximation resulting from the polynomial expansion of the Brownian bridge is more accurate than the Kloeden–Platen–Wright approximation, whilst still only using independent normal random vectors. We then link the asymptotic convergence rates of these approximations to the limiting fluctuations for the corresponding series expansions of the Brownian bridge. Moreover, and of interest in its own right, the analysis we use to identify the fluctuation processes for the Karhunen–Loève and Fourier series expansions of the Brownian bridge is extended to give a stand-alone derivation of the values of the Riemann zeta function at even positive integers.
We prove that the Riemann hypothesis is equivalent to the condition
$\int _{2}^x\left (\pi (t)-\operatorname {\textrm {li}}(t)\right )\textrm {d}t<0$
for all
$x>2$
. Here,
$\pi (t)$
is the prime-counting function and
$\operatorname {\textrm {li}}(t)$
is the logarithmic integral. This makes explicit a claim of Pintz. Moreover, we prove an analogous result for the Chebyshev function
$\theta (t)$
and discuss the extent to which one can make related claims unconditionally.
We prove a new generalization of Davenport's Fourier expansion of the infinite series involving the fractional part function over arithmetic functions. A new Mellin transform related to the Riemann zeta function is also established.
One of the approaches to the Riemann Hypothesis is the Nyman–Beurling criterion. Cotangent sums play a significant role in this criterion. Here we investigate the values of these cotangent sums for various shifts of the argument.
Four classes of multiple series, which can be considered as multifold counterparts of four classical summation formulae related to the Riemann zeta series, are evaluated in closed form.
We give bounds on the error in the asymptotic approximation of the log-Gamma function $\ln \unicode[STIX]{x1D6E4}(z)$ for complex $z$ in the right half-plane. These improve on earlier bounds by Behnke and Sommer [Theorie der analytischen Funktionen einer komplexen Veränderlichen, 2nd edn (Springer, Berlin, 1962)], Spira [‘Calculation of the Gamma function by Stirling’s formula’, Math. Comp.25 (1971), 317–322], and Hare [‘Computing the principal branch of log-Gamma’, J. Algorithms25 (1997), 221–236]. We show that $|R_{k+1}(z)/T_{k}(z)|<\sqrt{\unicode[STIX]{x1D70B}k}$ for nonzero $z$ in the right half-plane, where $T_{k}(z)$ is the $k$th term in the asymptotic series, and $R_{k+1}(z)$ is the error incurred in truncating the series after $k$ terms. We deduce similar bounds for asymptotic approximation of the Riemann–Siegel theta function $\unicode[STIX]{x1D717}(t)$. We show that the accuracy of a well-known approximation to $\unicode[STIX]{x1D717}(t)$ can be improved by including an exponentially small term in the approximation. This improves the attainable accuracy for real $t>0$ from $O(\exp (-\unicode[STIX]{x1D70B}t))$ to $O(\exp (-2\unicode[STIX]{x1D70B}t))$. We discuss a similar example due to Olver [‘Error bounds for asymptotic expansions, with an application to cylinder functions of large argument’, in: Asymptotic Solutions of Differential Equations and Their Applications (ed. C. H. Wilcox) (Wiley, New York, 1964), 16–18], and a connection with the Stokes phenomenon.
where the infimum is over all Dirichlet polynomials
$${{A}_{N}}\left( s \right)\,=\,\sum\limits_{n=1}^{N}{\frac{{{a}_{n}}}{{{n}^{s}}}}$$
of length $N$. In this paper we investigate $d_{N}^{2}$ under the assumption that the Riemann zeta function has four nontrivial zeros off the critical line.
Putnam [‘On the non-periodicity of the zeros of the Riemann zeta-function’,
Amer. J. Math.76 (1954), 97–99] proved that
the sequence of consecutive positive zeros of $\unicode[STIX]{x1D701}(\frac{1}{2}+it)$ does not contain any infinite arithmetic progression. We
extend this result to a certain class of zeta functions.
This paper concerns the problem of algebraic differential independence of the gamma function and ${\mathcal{L}}$-functions in the extended Selberg class. We prove that the two kinds of functions cannot satisfy a class of algebraic differential equations with functional coefficients that are linked to the zeros of the ${\mathcal{L}}$-function in a domain $D:=\{z:0<\text{Re}\,z<\unicode[STIX]{x1D70E}_{0}\}$ for a positive constant $\unicode[STIX]{x1D70E}_{0}$.
In this paper, we use the Riemann zeta function ζ(x) and the Bessel zeta function ζμ(x) to study the log behaviour of combinatorial sequences. We prove that ζ(x) is log-convex for x > 1. As a consequence, we deduce that the sequence {|B2n|/(2n)!}n ≥ 1 is log-convex, where Bn is the nth Bernoulli number. We introduce the function θ(x) = (2ζ(x)Γ(x + 1)) 1/x, where Γ(x) is the gamma function, and we show that logθ(x) is strictly increasing for x ≥ 6. This confirms a conjecture of Sun stating that the sequence is strictly increasing. Amdeberhan et al. defined the numbers an(μ) = 2 2n+1 (n + 1)!(μ+ 1)nζμ(2n) and conjectured that the sequence {an(μ)}n≥1 is log-convex for μ = 0 and μ = 1. By proving that ζμ(x) is log-convex for x > 1 and μ > -1, we show that the sequence {an(≥)}n>1 is log-convex for any μ > - 1. We introduce another function θμ,(x) involving ζμ(x) and the gamma function Γ(x) and we show that logθμ(x) is strictly increasing for x > 8e(μ + 2)2. This implies that
Based on Dobinski’s formula, we prove that
where Bn is the nth Bell number. This confirms another conjecture of Sun. We also establish a connection between the increasing property of and Holder’s inequality in probability theory.
We study a subtle inequity in the distribution of unnormalized differences between imaginary parts of zeros of the Riemann zeta function, which was observed by a number of authors. We establish a precise measure which explains the phenomenon, that the location of each Riemann zero is encoded in the distribution of large Riemann zeros. We also extend these results to zeros of more general $L$-functions. In particular, we show how the rank of an elliptic curve over $\mathbb{Q}$ is encoded in the sequences of zeros of other$L$-functions, not only the one associated to the curve.
We prove that the sequence {log ζ(n)}n≥2 is not holonomic, that is, does not satisfy a finite recurrence relation with polynomial coefficients. A similar result holds for L-functions. We then prove a result concerning the number of distinct prime factors of the sequence of numerators of even indexed Bernoulli numbers.
We derive an expansion for the (expected) difference between the continuously monitored supremum and evenly monitored discrete maximum over a finite time horizon of a jump diffusion process with independent and identically distributed normal jump sizes. The monitoring error is of the form a0 / N1/2 + a1 / N3/2 + · · · + b1 / N + b2 / N2 + b4 / N4
+ · · ·, where N is the number of monitoring intervals. We obtain explicit expressions for the coefficients {a0, a1, …, b1, b2, …}. In particular, a0 is proportional to the value of the Riemann zeta function at ½, a well-known fact that has been observed for Brownian motion in applied probability and mathematical finance.