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On the Size of an Expression in the
Nyman-Beurling-Baez—Duarte Criterion for
the Riemann Hypothesis

Helmut Maier and Michael Th. Rassias

Abstract. A crucial role in the Nyman-Beurling-Baez-Duarte approach to the Riemann Hypothesis
is played by the distance

dlzvzzinfi[:|1—{AN(%+1'¢)|2%,

where the infimum is over all Dirichlet polynomials
N
a
An(s) =) *:‘
n=1 1

of length N. In this paper we investigate dx under the assumption that the Riemann zeta function
has four nontrivial zeros off the critical line.

1 Introduction

The Nyman-Beurling-Bdez-Duarte approach to the Riemann hypothesis asserts that
the Riemann hypothesis is true if and only if limy_,.. d% = 0, where

2 .o 1 < 1 y\|?2 dt
and the infimum is over all Dirichlet polynomials
N
a
AN(S) = Z 71‘
n=11
of length N (see [3]).

Burnol [4], improving on work of Baez-Duarte, Balazard, Landreau, and Saias
[1,2], showed that

2
liminfdy logN > > m(pz)
Noee re(py-y [P

>

where m(p) denotes the multiplicity of the zero p.
This lower bound is believed to be optimal, and one expects that

1 m(p)®
(*) dy ~ .
N g 5., I
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Under the Riemann hypothesis, one has

> m(;;) =2+ -log4m,
Re(py-1 1P
where y is the Euler-Mascheroni constant.
S. Bettin, J. B. Conrey, and D. W. Farmer [3] prove (*) under an additional assump-
tion and also identify the Dirichlet polynomials Ay, for which the expected infimum
in (1.1) is assumed. They prove the following theorem.

Theorem ([3, Theorem1]) Let

If the Riemann hypothesis is true and if

> bt
i<t 1S (PP
for some & > 0, then
1 oo 1 . \(2 dt 2+y—logdn
1.2 —/ 1-CVn| = +it ~ .
(12) 21 —oo‘ CN(Z_H)‘ 1+ log N

In this paper we investigate expression (1.2) under an assumption contrary to the
Riemann hypothesis: There are exactly four nontrivial zeros off the critical line. We
observe that nontrivial zeros off the critical line always appear as quadruplets. Indeed,
if ((p) =0forp=0+iywithl>o> %, y > 0, then from the functional equation

1.3) A(s) =A(-5),
where
_ s
A(s) = nl1( 5) (s)
and the trivial relation {(5) = {(s), we obtain that
{(o+iy)={(1-0+iy)={(0-iy)={(1-0~-iy)=0.
We prove the following theorem.

Theorem 1.1  Let oy >1/2, 79 > 0, {(0o+iyo) = ((1—0g+iyy) =0, and {(a+iy) # 0
for all other ¢ + iy with ¢ > 1/2. Assume that

«Ti° (T > o0),

|Im(p)|<T |C,(P)|2
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for some & > 0. Then there are real constants A = A(0y,y0), B = B(09,y0), and
C = C(09, yo) such that for all € > 0,

;T/:\l_m(iw)fﬁﬂ

1 oo—
= W(ANZ ' cos(2yplogN)

+ BN?®'sin(2yplog N) + CN?®7") (1+ O(N%_”"J'e)) .

2 Preliminary Lemmas and Definitions

Lemma 2.1 Lete > 0 be fixed but arbitrarily small. Under the assumptions of Theo-
rem 1.1 we have

(2.1) {(o +it) < |t (|t| - o),

fori-e<o<l+e

1
2
Proof Estimate (2.1) is well known as the Lindel6f hypothesis, which is a conse-
quence of the Riemann hypothesis. In [5], the Lindel6f hypothesis is proved on the
assumption of the Riemann hypothesis. This proof can be adapted to the new situa-
tion with slight modification.

The function log {(s) is holomorphic in the domain

1 1 1 1

9 = {0+it:0’> 5} N {[5,1] U |:£+l')/0,00+l')/():| UI:E—I')/(),O'()—I')/():I}.
Now let 2 < 0* <0 <1. Asin [5], let z = 0 + it, but now [t is sufficiently large.

We apply the Borel-Carathéodory theorem to the function log {(z) and the circles
with centre 2 + it and radii % - %6 and % -6,(0<d< %).

On the larger circle,

Re(log{(2)) = log |{(2)| < Alog!

for a fixed positive constant A. Hence, on the smaller circle,

3-28 3-36
Ts Alogt + 182

2 2

[log {(2)] < |log|¢(2+it)[| < A6 log .

We now apply Hadamard’s three circle theorem as in [5]. The proof there can be taken
over without change to obtain

(2.2) {(z) = O(t%), for every o > %,

which is [5, (14.2.5)].
By the functional equation (1.3), we obtain

(2.3) ‘((%—e+it)| = o([t*).

Claim (2.1) now follows from (2.2), (2.3), and the Phragmén-Lindel6f theorem. W
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Definition 2.2  For p a nontrivial zero of {(s), let

zZ—Ss

S @

(27_[)2n+1 2n
F(z) = 2 Z< e e G

Ry(p,s) =

Lemma 2.3 If0 <Re(s) <1, then

WO - 5 (- Ty £9) 1 g SR ().

where the sum is over all distinct nontrivial zeros of {(s).

Proof Thisis [3, Lemma 2]. [ |

Lemma 2.4 Let e > 0. Under the assumptions of Theorem 1.1, we have

S Ry(p,s) < N¥Js|i-5%,
p-Re(p)=3

Proof The proof is identical to the proof of [3, Lemma 3]. There the summation
condition Re(s) = 1/2 is not needed, since the Riemann hypothesis is assumed. W

Lemma 2.5 )
O R DU —
polel=3 |p—s|<l2l 1<"(p)llp _5|2
Re(p)=3
Proof Thisis [3, (5)]. |
Definition 2.6 We set
1
2(1)(1\’,5) = Z Rn(p,s),
logN pRe(p)=3
1
2(2)(]\],5) = Z Ry(p,s)
108N e tdozive}

3 Proof of Theorem 1.1

We closely follow the proof of [3, Theorem 1]. We have
1 °° 1 . \2 dt
E[M|I_CVN(E+lt)| T-‘—tz

( = (Vn(s))(1=¢Vn(1-5))

ds
2711

-9
- [ AR AONIREIERY

27mi

s(l—s)‘
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By Lemma 2.3 and Definition 2.6, this is

Gy log12N217'ri /(%_5) (Z:;(S) -2O(N,5) -2P(N,s) —FS( %) ) x

We now expand the product in (3.1) and separately estimate the products that do not
contain terms X(?) and the products consisting of a term %(?) and another term.
By Definition 2.6, we obtain

1 1 {(s){(1-s)
T R )
(logN)2 27i J(4-¢) s(1-s)
_ _ L T

sl (log N)2 2mi

NOo+e1iyo=s NJoo+e2iyo+s—1 {(s){(1-5) ds
y .
_[(%75) {'(0o + 611')/0)(’(00 +€2iyo) (0o + €1iyo — 5)2(00 + €219 — 5)2 5(1 =)

After factoring out the terms N2%0~1*(e17€2)170 e obtain integrals that do not depend
on N. The path of integration can be shifted to Re(s) = 1/2. We obtain the terms

A*N2U0—1+2iy0 + B*NZJO—I + C*N200—1—2iyg

with A*, B*, C* € C. Since
;[:\l_m(;”t)rﬁftz

is real, we obtain the main term of Theorem 1.1. We now proceed to the estimate of
the other terms.
We closely follow [3]. It follows from Lemmas 2.1, 2.4, and 2.5 that

L1 {(s)¢(1-5)
(log N)? 27i \/-%—e) PIZ;Z RN(Pl’S)RN(PZ)l_S)W ds <

1 f Z 1 |ds| N ( 1 )
(logN)? J3-0) Sz [(plo =l [sfis=se  “Hlog N/
Now by Lemma 2.4 and the trivial estimate

(1) -0,
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all the other terms in (3.1) not containing factors £(3) are trivially O(1/log® N), apart

from
o1 1 ¢ asO(n )0 -s)
(log N)?2 2mi /(‘%—e) C(l HET(Ns) s(1-s) ds

1 (// X/ 1_2/)
=logN - -=-(p) + = (p) +
2¢ X |p|?
log N 1 1
= + +7 s
lp[? ( lpI>=€1¢" (p)] \plz)

where we set S
= sl 2
x(s)=m F( 2)
and use the bound )
" - . €
¢ (2+zt) < |5,
which follows from Lemma 2.1 by the well-known estimate for the derivatives of a
holomorphic function. By moving the line of integration to Re(s) = 1 +¢, we get that
the contribution from the products not containing =(? is

1 1 1
— — 1o ——).
log N p:Re%;):% lp|? ( log2 N)

We now come to the products that contain the factor (2) (N, ).
They can be handled by adding the factor N Go=yte stemming from N*~° in Defi-
nition 2.2. These estimates yield the error-term in Theorem L1. |
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