Control of the structure and chemistry at the interfaces of compound semiconductors is essential for the commercial use of these materials in electronic and optical technologies. This can only be achieved when the governing thermodynamics and kinetics of interfacial reactions are understood. Based primarily on the experience of metal/Si interactions, however, a prevailing belief was born that thin-film reactions follow a separate set of thermodynamic and kinetic “rules” which are different from bulk reactions. The intent of our work has been to not only characterize metal/GaAs contact reactions but also to rationalize these reactions with equilibrium phase diagrams and bulk metal/GaAs diffusion couple experiments. Through this approach, a better understanding of thin-film and bulk differences has been obtained.
The Ir/GaAs system is used as an example. Phase formation and reaction kinetics were studied for 30 nm Ir films on (100) GaAs using TEM, XTEM, and AEM. Bulk diffusion between 0.25 mm thick Ir foil and (100) GaAs wafers was studied with SEM and electron probe microanalysis (EPMA). The diffusion paths and kinetics were the same for thin-film and bulk. The phase sequence Ir/IrGa/IrAs2/GaAs formed for all diffusion couples. Reaction kinetics were parabolic with an activation energy of 3.0 eV for both thin-film and bulk, and the data was colinear in an Arrhenius plot. Reacted layer morphology in both cases was layered. The effects of grain size, crystallographic texturing, and the relative diffusivities of the components on the reaction mechanisms in bulk versus thin-film reactions are considered.