Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T18:35:29.891Z Has data issue: false hasContentIssue false

Rapid Thermal Techniques for Zinc Diffusion and Metal/Gallium Arsenide Alloying to Produce Low Resistance Ohmic Contacts

Published online by Cambridge University Press:  26 February 2011

G. Rajeswaran
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York, 14650-02011
D. J. Lawrence
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York, 14650-02011
S.-Tong Lee
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York, 14650-02011
K. B. Kahen
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York, 14650-02011
Get access

Abstract

Rapid thermal processing has been utilized to diffuse Zn into GaAs from a thin film zinc silicate source prepared by atmospheric pressure chemical vapor deposition (CVD). The zinc source was capped with ∼500 Å of silicon dioxide (SiO2 ). At 750°C for 20 sec, the diffusion of Zn reached a depth of 0.8 μm. For these diffusions, the diffusion constant is concentration dependent and is proportional to the square of the Zn concentration. Above 7500 C, anomalous secondary diffusion fronts were observed in the Zn diffusion profiles. A new model is proposed that explains the diffusion profiles at all temperatures. Ohmic contacts have been made to the above Zn-diffused surfaces using Cr/AuZn/Au metallizations. A typical value of the specific contact resistance is 8.0 × 10−7 ohm-cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cunnell, F.A. and Gooch, C.H., J. Phys. Chem. Solids 15, 127 (1960).CrossRefGoogle Scholar
2. Weisberg, L.R. and Blanc, J., Phys. Rev. 131(4), 1548 (1963).CrossRefGoogle Scholar
3. Casey, H.C., Panish, M.B., and Chang, L.L., Phys. Rev. 163(3), 162 (1967).Google Scholar
4. Tuck, B. and Kadhim, M.A.H., J. Mat. Sci. 7, 581 (1972).CrossRefGoogle Scholar
5. Shih, K.K., J. Electrochem. Soc. 123, 11, 1737 (1976).CrossRefGoogle Scholar
6. Ghandhi, S.K. and Field, R.J., Appl. Phys. Lett. 38(4), 267 (1981).CrossRefGoogle Scholar
7. Dobkin, D. and Gibbons, J.F., J. Electrochem. Soc. 131(7), 1699 (1984).CrossRefGoogle Scholar
8. Tiku, S.K., Delaney, J.B., Gabriel, N.S., and Yuan, H.T., Mat. Res. Soc. Symp. Proc. 35, 483 (1985).CrossRefGoogle Scholar
9. Usami, A., Tokuda, Y., Shivaki, H., Ueda, H., Wada, T., Kan, H., and Murakami, T., Mat. Res. Soc. Symp. Proc. 22, 393 (1987).CrossRefGoogle Scholar
10. Tiwari, S., Hintzman, J., and Callegari, A., Appl. Phys. Lett. 51(25), 2188 (1987).CrossRefGoogle Scholar
11. Frank, F. and Turnbull, D., Phys. Rev. 104, 617 (1956).CrossRefGoogle Scholar
12. Ghandhi, S.K., in VLSI Fabrication Principles (John Wiley and Sons, NY, 1983), p. 185.Google Scholar
13. Crank, J., in The Mathematics of Diffusion (Oxford University Press, London, 1956).Google Scholar
14. Reynolds, S., Vook, D.W., and Gibbons, J.F., J. Appl. Phys. 63(4), 1052 (1988).CrossRefGoogle Scholar
15. Kahen, K.B., Rajeswaran, G., and Lawrence, D.J. (unpublished).Google Scholar