Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T18:53:24.220Z Has data issue: false hasContentIssue false

Growth and Properties of (Al, Ga)As / NiAl / (Al, Ga)As: An Epitaxical Semiconductor / Metal / Semiconductor System

Published online by Cambridge University Press:  26 February 2011

T. Sands
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
J.P. Harbison
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
N. Tabatabaie
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
W.K. Chan
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
H.L. Gilchrist
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
S.A. Schwarz
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
C.L. Schwartz
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
L.T. Florez
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
V.G. Keramidas
Affiliation:
Bellcore, 331 Newman Springs Rd, Red Bank, NJ 07701-7040
Get access

Abstract

The epitaxical and thermally stable NiAI/(AI, Ga)As system is shown to meet all of the basic materials criteria for buried metal/compound semiconductor heterostructures. We describe the growth of these heterostructures by molecular beam epitaxy. Even the thinnest buried NiAI films grown thus far (1.5 nm) are electrically continuous and metallic. Electron tunneling and lateral transport measurements provide strong evidence for size quantization in NiAl films thinner than 3.5 nm. The merging of compound semiconductor tunneling barriers with epitaxical metallic quantum wells and the ability to selectively contact buried metallic quantum wells is expected to yield novel three-terminal devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Sze, S. M. and Gummel, H. K., Solid State Electronics 9, 751 (1966); M. Heiblum, Solid-State Electronics 24, 343 (1961).Google Scholar
2. Crowell, C. R. and Sze, S. M., Phys. Rev. Lett. 15, 659 (1965) and references therein.Google Scholar
3. Ballistic transport of electrons across the base ensures that the base transit time will be negligible compared to the collector transit time and, thus, will not limit the speed of the device.Google Scholar
4. Rosencher, E., Delage, S., Campidelli, Y. and D'Avitaya, F. Arnaud, Electron. Lett. 20, 762 (1984).Google Scholar
5. Hensel, J. C., Levi, A. F. J., Tung, R. T. and Gibson, J. M., Appl. Phys. Lett. 47, 151 (1985).Google Scholar
6. Tung, R. T., Levi, A. F. J. and Gibson, J. M., Appl. Phys. Lett. 48, 635 (1986).Google Scholar
7. Rosencher, E., Badoz, P. A., Pfister, J. C., d'Avitaya, F. Arnaud, Vincent, G. and Delage, S., Appl. Phys. Lett. 49, 271 (1986).Google Scholar
8. Davis, R. H. and Hosack, H. H., J. Appl. Phys. 34, 864 (1963); J. P. Rogers, P. H. Cutler, T. E. Feuchtwang and A. A. Lucas, Surface Science 181, 436 (1987); M. L. Huberman and J. Maserjian, Phys. Rev. B 37, 9065 (1988).CrossRefGoogle Scholar
9. Beyers, R., Kim, K. B. and Sinclair, R., J. Appl. Phys. 61, 2195 (1987); R. Schmid-Fetzer, J. Electronic Materials 17, 193 (1988); T. Sands, J. Metals 38, 31 (1986); R. S. Williams, J. R. Lince, T. C. Tsai and J. H. Pugh, Mater. Res. Soc. Symp. Proc. 54, 335 (1986); J.-C. Lin, K-C. Hsieh, K Schulz and Y. A. Chang, J. Mater. Res. 3, 148 (1988).Google Scholar
10. Lince, J. R. and Williams, R. S., J. Vac. Sci. Tech. B 3, 1217 (1985).Google Scholar
11. Guivarc'h, A., Guerin, R. and Secoue, M., Electronics Lett. 23, 1004 (1987).Google Scholar
12. Palmstrøm, C. J., Garrison, K., Fimland, B.-O., Harbison, J. P., Sands, T., Chase, E. W. and Florez, L. T., talk presented at the Electronic Materials Conf., Boulder, CO, June 22–24, 1988.Google Scholar
13. Sands, T., Appl. Phys. Lett. 52, 197 (1988).CrossRefGoogle Scholar
14. Sands, T., Chan, W.K, Chang, C. C., Chase, E. W. and Keramidas, V. G., Appl. Phys. Lett. 52 1338 (1988).CrossRefGoogle Scholar
15. Jaklevic, R.C., Lambe, J., Mikkor, M. and Vassell, W.C., Phys. Rev. Lett. 26 88 (1971); R. C. Jaklevic and J. Lambe, Phys. Rev. B 12 4146 (1975).Google Scholar
16. Several interesting buried metal devices may be fabricated with polycrystalline buried metal films where seeding of the overlayer is accomplished through openings in the metal film (e.g., the GaAs/W/GaAs “metal gate” transistor [Derkits, G. E., Harbison, J. P., Levkoff, J. and Hwang, D. M., Appl. Phys. Lett. 48, 1220 (1986)] and the permeable base transistor [C.O. Bozler and G. D. Alley, IEEE Trans. Electron Devices ED-27, 1128 (1980)].Google Scholar
17. See, for example, Grabow, M. H. and Gilmer, G. H., Surface Science 194, 333 (1988).Google Scholar
18. See recent work on YbAs/GaAs and ErAs/GaAs: Richter, H. J., Smith, R. S., Herres, N., Seelmann-Eggebert, M. and Wennekers, P., Appl. Phys. Lett. 53, 99 (1988); C. J. Palmstrøm, N. Tabatabaie and S. J. Allen, Jr., Appl. Phys. Lett. 53 2608 (1988).Google Scholar
19. For a tabulation of transition metal-GaAs reaction products, see Sands, T., Materials Science and Eng. B, in press (1989), Table I.Google Scholar
20. Sands, T., Keramidas, V. G., Yu, K. M., Washburn, J. and Krishnan, K., J. Appl. Phys. 62, 2070 (1987); A. Lahav, M. Eizenberg and Y. Komem, J. Appl. Phys. 60, 991 (1986); C. J. Palmstrøm, C. C. Chang, A. J. Yu, G. J. Galvin and J. W. Mayer, J. Appl. Phys. 62, 3755 (1987).Google Scholar
21. Compare the heat of formation of NiAI, −118.5 kJ/mol, with that of GaAs, −81.6 kJ/mol; Smithells Metals Reference Book, 6th Edition, Ed. E. A. Brandes (Butterworths, London, 1983) Table 8.5a.Google Scholar
22. A broad phase field is only advantageous if neither of the atomic species in the intermetallic has a high vapor pressure. If one species has a high vapor pressure, as in GaAs or ErAs (a semimetal), and if the intermetallic is essentially a line compound (i.e. very narrow phase field), then accurate control over the deposition rate and stoichiometry can be maintained over a wide range of substrate temperature and partial pressures of the volatile species by controlling the deposition rate of the nonvolatile species (e.g., Ga or Er).Google Scholar
23. Bradley, A. J. and Taylor, A., Proc. R. Soc. A 159, 56 (1937); M. J. Cooper, Phil. Mag. 8, 805 (1964).Google Scholar
24. Jacobi, H., Vassos, B. and Engell, H.-J., J. Phys. Chem. Solids 30, 1261 (1969).Google Scholar
25. Sands, T., Harbison, J. P., Chan, W.K, Schwarz, S. A., Chang, C. C., Palmstrøm, C. J. and Keramidas, V. G., Appl. Phys. Lett. 52, 1216 (1988).Google Scholar
26. Harbison, J. P., Sands, T., Tabatabaie, N., Chan, W. K., Florez, L. T. and Keramidas, V. G., Appl. Phys. Lett. 53, 1717 (1988).Google Scholar
27. Tabatabaie, N., Sands, T., Harbison, J. P., Gilchrist, H.L and Keramidas, V. G., Appl. Phys. Lett. 53 2528 (1988).Google Scholar
28. Zhu, J., Carter, C. B., Palmstrgim, C. J., and Garrison, K. C., private communication.Google Scholar
29. For a general treatment of domain structures see Guymont, M., Gratias, D., Portier, R. and Fayard, M., phys. stat. sol. (a) 38, 629 (1976).Google Scholar
30. Tabatabaie, N., Sands, T., Harbison, J. P., Gilchrist, H.L., Florez, L.T. and Keramidas, V.G., submitted to Appl. Phys. Lett. (1989), and references therein.Google Scholar