Wireless communications such as those in cell phones are utilizing increasing chip design complexity. For example analog mixed-signal chips can contain RF capability which requires integrated inductors [1,2]. High performance RF designs are enabled by the use of thick Copper (Cu) and Aluminum (Al) wires (>3um). In particular, the quality factor of the inductor, which is the ratio of magnetic stored energy over average dissipation, is dependent on the metal thickness. High quality factors, can be achieved by using thick Cu inductors. In some applications, the total thickness of Cu in the inductor can be as much as 12 um.
The fabrication of thick Cu layers is in many ways easier than that of thin Cu layers. For example, there are no limitations in terms of lithography or liner and seed layer thickness. However, there are still challenges with fabrication due to stress. Cracking of the dielectric can occur, due to the mismatch in coefficient of thermal expansion between Cu and SiO2, and due to the thick Cu layers in the inductor stack. Both the layout and the processing must be optimized to ensure that cracking does not occur.
This paper will discuss current applications, inductor design, and the reliability challenges and solutions associated with thick Cu interconnects.