We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let $\{b_n\}_{n=1}^{\infty }$ be a sequence of integers larger than 1. We will study the harmonic analysis of the equal-weighted Moran measures $\mu _{\{b_n\},\{{\mathcal D}_n\}}$ with ${\mathcal D}_n=\{0,1,2,\ldots ,q_n-1\}$, where $q_n$ divides $b_n$ for all $n\geq 1.$ In this paper, we first characterize all the maximal orthogonal sets of $L^2(\mu _{\{b_n\},\{{\mathcal D}_n\}})$ via a tree mapping. By this characterization, we give some sufficient conditions for the maximal orthogonal set to be an orthonormal basis.
We show that the Hausdorff dimension of any slice of the graph of the Takagi function is bounded above by the Assouad dimension of the graph minus one, and that the bound is sharp. The result is deduced from a statement on more general self-affine sets, which is of independent interest. We also prove that Marstrand’s slicing theorem on the graph of the Takagi function extends to all slices if and only if the upper pointwise dimension of every projection of the length measure on the x-axis lifted to the graph is at least one.
We study a nonlinear Beltrami equation $f_\theta =\sigma \,|f_r|^m f_r$ in polar coordinates $(r,\theta ),$ which becomes the classical Cauchy–Riemann system under $m=0$ and $\sigma =ir.$ Using the isoperimetric technique, various lower estimates for $|f(z)|/|z|, f(0)=0,$ as $z\to 0,$ are derived under appropriate integral conditions on complex/directional dilatations. The sharpness of the above bounds is illustrated by several examples.
We determine almost sure limits of rescaled intrinsic volumes of the construction steps of fractal percolation in ${\mathbb R}^d$ for any dimension $d\geq 1$. We observe a factorization of these limit variables which allows one, in particular, to determine their expectations and covariance structure. We also show the convergence of the rescaled expectations and variances of the intrinsic volumes of the construction steps to the expectations and variances of the limit variables, and we give rates for this convergence in some cases. These results significantly extend our previous work, which addressed only limits of expectations of intrinsic volumes.
For every $n\geq 2$, Bourgain’s constant $b_n$ is the largest number such that the (upper) Hausdorff dimension of harmonic measure is at most $n-b_n$ for every domain in $\mathbb {R}^n$ on which harmonic measure is defined. Jones and Wolff (1988, Acta Mathematica 161, 131–144) proved that $b_2=1$. When $n\geq 3$, Bourgain (1987, Inventiones Mathematicae 87, 477–483) proved that $b_n>0$ and Wolff (1995, Essays on Fourier analysis in honor of Elias M. Stein (Princeton, NJ, 1991), Princeton University Press, Princeton, NJ, 321–384) produced examples showing $b_n<1$. Refining Bourgain’s original outline, we prove that
In this paper, we study the dimension of planar self-affine sets, of which generating iterated function system (IFS) contains non-invertible affine mappings. We show that under a certain separation condition the dimension equals to the affinity dimension for a typical choice of the linear-parts of the non-invertible mappings, furthermore, we show that the dimension is strictly smaller than the affinity dimension for certain choices of parameters.
Given two unital C*-algebras equipped with states and a positive operator in the enveloping von Neumann algebra of their minimal tensor product, we define three parameters that measure the capacity of the operator to align with a coupling of the two given states. Further, we establish a duality formula that shows the equality of two of the parameters for operators in the minimal tensor product of the relevant C*-algebras. In the context of abelian C*-algebras, our parameters are related to quantitative versions of Arveson's null set theorem and to dualities considered in the theory of optimal transport. On the other hand, restricting to matrix algebras we recover and generalize quantum versions of Strassen's theorem. We show that in the latter case our parameters can detect maximal entanglement and separability.
Given a Borel probability measure µ on $\mathbb{R}^n$ and a real matrix $R\in M_n(\mathbb{R})$. We call R a spectral eigenmatrix of the measure µ if there exists a countable set $\Lambda\subset \mathbb{R}^n$ such that the sets $E_\Lambda=\big\{{\rm e}^{2\pi i \langle\lambda,x\rangle}:\lambda\in \Lambda\big\}$ and $E_{R\Lambda}=\big\{{\rm e}^{2\pi i \langle R\lambda,x\rangle}:\lambda\in \Lambda\big\}$ are both orthonormal bases for the Hilbert space $L^2(\mu)$. In this paper, we study the structure of spectral eigenmatrix of the planar self-affine measure $\mu_{M,D}$ generated by an expanding integer matrix $M\in M_2(2\mathbb{Z})$ and the four-elements digit set $D = \{(0,0)^t,(1,0)^t,(0,1)^t,(-1,-1)^t\}$. Some sufficient and/or necessary conditions for R to be a spectral eigenmatrix of $\mu_{M,D}$ are given.
Marstrand’s theorem states that applying a generic rotation to a planar set A before projecting it orthogonally to the x-axis almost surely gives an image with the maximal possible dimension $\min(1, \dim A)$. We first prove, using the transversality theory of Peres–Schlag locally, that the same result holds when applying a generic complex linear-fractional transformation in $PSL(2,\mathbb{C})$ or a generic real linear-fractional transformation in $PGL(3,\mathbb{R})$. We next show that, under some necessary technical assumptions, transversality locally holds for restricted families of projections corresponding to one-dimensional subgroups of $PSL(2,\mathbb{C})$ or $PGL(3,\mathbb{R})$. Third, we demonstrate, in any dimension, local transversality and resulting projection statements for the families of closest-point projections to totally-geodesic subspaces of hyperbolic and spherical geometries.
This paper seeks to build on the extensive connections that have arisen between automata theory, combinatorics on words, fractal geometry, and model theory. Results in this paper establish a characterization for the behavior of the fractal geometry of “k-automatic” sets, subsets of $[0,1]^d$ that are recognized by Büchi automata. The primary tools for building this characterization include the entropy of a regular language and the digraph structure of an automaton. Via an analysis of the strongly connected components of such a structure, we give an algorithmic description of the box-counting dimension, Hausdorff dimension, and Hausdorff measure of the corresponding subset of the unit box. Applications to definability in model-theoretic expansions of the real additive group are laid out as well.
The purpose of this study is two-fold. First, the Hausdorff dimension formula of the multidimensional multiplicative subshift (MMS) in $\mathbb {N}^d$ is presented. This extends the earlier work of Kenyon et al [Hausdorff dimension for fractals invariant under multiplicative integers. Ergod. Th. & Dynam. Sys.32(5) (2012), 1567–1584] from $\mathbb {N}$ to $\mathbb {N}^d$. In addition, the preceding work of the Minkowski dimension of the MMS in $\mathbb {N}^d$ is applied to show that their Hausdorff dimension is strictly less than the Minkowski dimension. Second, the same technique allows us to investigate the multifractal analysis of multiple ergodic average in $\mathbb {N}^d$. Precisely, we extend the result of Fan et al, [Multifractal analysis of some multiple ergodic averages. Adv. Math.295 (2016), 271–333] of the multifractal analysis of multiple ergodic average from $\mathbb {N}$ to $\mathbb {N}^d$.
Arithmetic quasidensities are a large family of real-valued set functions partially defined on the power set of $\mathbb {N}$, including the asymptotic density, the Banach density and the analytic density. Let $B \subseteq \mathbb {N}$ be a nonempty set covering $o(n!)$ residue classes modulo $n!$ as $n\to \infty $ (for example, the primes or the perfect powers). We show that, for each $\alpha \in [0,1]$, there is a set $A\subseteq \mathbb {N}$ such that, for every arithmetic quasidensity $\mu $, both A and the sumset $A+B$ are in the domain of $\mu $ and, in addition, $\mu (A + B) = \alpha $. The proof relies on the properties of a little known density first considered by Buck [‘The measure theoretic approach to density’, Amer. J. Math.68 (1946), 560–580].
Let G be a real Lie group, $\Lambda <G$ a lattice and $H\leqslant G$ a connected semisimple subgroup without compact factors and with finite center. We define the notion of H-expanding measures $\mu $ on H and, applying recent work of Eskin–Lindenstrauss, prove that $\mu $-stationary probability measures on $G/\Lambda $ are homogeneous. Transferring a construction by Benoist–Quint and drawing on ideas of Eskin–Mirzakhani–Mohammadi, we construct Lyapunov/Margulis functions to show that H-expanding random walks on $G/\Lambda $ satisfy a recurrence condition and that homogeneous subspaces are repelling. Combined with a countability result, this allows us to prove equidistribution of trajectories in $G/\Lambda $ for H-expanding random walks and to obtain orbit closure descriptions. Finally, elaborating on an idea of Simmons–Weiss, we deduce Birkhoff genericity of a class of measures with respect to some diagonal flows and extend their applications to Diophantine approximation on similarity fractals to a nonconformal and weighted setting.
Several authors have shown that Kusuoka’s measure κ on fractals is a scalar Gibbs measure; in particular, it maximizes a pressure. There is also a different approach, in which one defines a matrix-valued Gibbs measure µ, which induces both Kusuoka’s measure κ and Kusuoka’s bilinear form. In the first part of the paper, we show that one can define a ‘pressure’ for matrix-valued measures; this pressure is maximized by µ. In the second part, we use the matrix-valued Gibbs measure µ to count periodic orbits on fractals, weighted by their Lyapounov exponents.
In this paper, we investigate the regularity properties and determine the almost sure multifractal spectrum of a class of random functions constructed as sums of pulses with random dilations and translations. In addition, the continuity moduli of the sample paths of these stochastic processes are investigated.
Given a $\sigma $-finite measure space $(X,\mu )$, a Young function $\Phi $, and a one-parameter family of Young functions $\{\Psi _q\}$, we find necessary and sufficient conditions for the associated Orlicz norms of any function $f\in L^\Phi (X,\mu )$ to satisfy
The constant C is independent of f and depends only on the family $\{\Psi _q\}$. Several examples of one-parameter families of Young functions satisfying our conditions are given, along with counterexamples when our conditions fail.
On post-critically finite self-similar sets, whose walk dimensions of diffusions are in general larger than 2, we find a sharp region where two classes of Besov spaces, the heat Besov spaces $B^{p,q}_\sigma (K)$ and the Lipschitz–Besov spaces $\Lambda ^{p,q}_\sigma (K)$, are identical. In particular, we provide concrete examples that $B^{p,q}_\sigma (K)=\Lambda ^{p,q}_\sigma (K)$ with $\sigma>1$. Our method is purely analytical, and does not involve heat kernel estimate.
Let $\mu$ be a Radon measure on the nth Heisenberg group ${\mathbb{H}}^n$. In this note we prove that if the $(2n+1)$-dimensional (Heisenberg) Riesz transform on ${\mathbb{H}}^n$ is $L^2(\mu)$-bounded, and if $\mu(F)=0$ for all Borel sets with ${\text{dim}}_H(F)\leq 2$, then $\mu$ must have $(2n+1)$-polynomial growth. This is the Heisenberg counterpart of a result of Guy David from [Dav91].