Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-22T01:21:28.683Z Has data issue: false hasContentIssue false

Almost sure convergence and second moments of geometric functionals of fractal percolation

Published online by Cambridge University Press:  28 November 2023

Michael A. Klatt*
Affiliation:
Heinrich-Heine-Universität Düsseldorf
Steffen Winter*
Affiliation:
Karlsruhe Institute of Technology
*
*Postal address: Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; Experimental Physics, Saarland University, Center for Biophysics, 66123 Saarbrücken, Germany. Present address: Institut für KI Sicherheit, Deutsches Zentrum für Luft- und Raumfahrt, Wilhelm-Runge-Straße 10, 89081 Ulm, Germany; Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt, 51170 Köln, Germany; Department of Physics, Ludwig-Maximilians-Universität, Schellingstraße 4, 80799 Munich, Germany. Email address: michael.klatt@dlr.de
**Postal address: Karlsruhe Institute of Technology, Department of Mathematics, Englerstr. 2, 76128 Karlsruhe, Germany. Email address: steffen.winter@kit.edu

Abstract

We determine almost sure limits of rescaled intrinsic volumes of the construction steps of fractal percolation in ${\mathbb R}^d$ for any dimension $d\geq 1$. We observe a factorization of these limit variables which allows one, in particular, to determine their expectations and covariance structure. We also show the convergence of the rescaled expectations and variances of the intrinsic volumes of the construction steps to the expectations and variances of the limit variables, and we give rates for this convergence in some cases. These results significantly extend our previous work, which addressed only limits of expectations of intrinsic volumes.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Arhosalo, I. et al. (2012). Visible parts of fractal percolation. Proc. Edinburgh Math. Soc. 55, 311331.10.1017/S0013091509001680CrossRefGoogle Scholar
Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.10.1007/978-3-642-65371-1CrossRefGoogle Scholar
Berlinkov, A. and Järvenpää, E. (2019). Porosities of Mandelbrot percolation. J. Theoret. Prob. 32, 608632.10.1007/s10959-019-00895-zCrossRefGoogle Scholar
Biggins, J. D. (1977). Martingale convergence in the branching random walk. J. Appl. Prob. 14, 2537.10.2307/3213258CrossRefGoogle Scholar
Broman, E. I. and Camia, F. (2008). Large-N limit of crossing probabilities, discontinuity, and asymptotic behavior of threshold values in Mandelbrot’s fractal percolation process. Electron. J. Prob. 13, 980–999.10.1214/EJP.v13-511CrossRefGoogle Scholar
Broman, E. I. and Camia, F. (2010). Universal behavior of connectivity properties in fractal percolation models. Electron. J. Prob. 15, 13941414.10.1214/EJP.v15-805CrossRefGoogle Scholar
Broman, E. I., Camia, F., Joosten, M. and Meester, R. (2013). Dimension (in)equalities and Hölder continuous curves in fractal percolation. J. Theoret. Prob. 26, 836854.10.1007/s10959-012-0413-8CrossRefGoogle Scholar
Buczolich, Z. et al. (2021). Fractal percolation is unrectifiable. Adv. Math. 390, article no. 107906.10.1016/j.aim.2021.107906CrossRefGoogle Scholar
Chayes, J. T. and Chayes, L. (1989). The large-N limit of the threshold values in Mandelbrot’s fractal percolation process. J. Phys. A 22, L501L506.10.1088/0305-4470/22/11/009CrossRefGoogle Scholar
Chayes, J. T., Chayes, L. and Durrett, R. (1988). Connectivity properties of Mandelbrot’s percolation process. Prob. Theory Relat. Fields 77, 307324.10.1007/BF00319291CrossRefGoogle Scholar
Chayes, L. (1996). On the length of the shortest crossing in the super-critical phase of Mandelbrot’s percolation process. Stoch. Process. Appl. 61, 2543.10.1016/0304-4149(95)00071-2CrossRefGoogle Scholar
Chen, C., Ojala, T., Rossi, E. and Suomala, V. (2017). Fractal percolation, porosity, and dimension. J. Theoret. Prob. 30, 14711498.10.1007/s10959-016-0680-xCrossRefGoogle Scholar
Don, H. (2015). New methods to bound the critical probability in fractal percolation. Random Structures Algorithms 47, 710730.10.1002/rsa.20566CrossRefGoogle Scholar
Falconer, K. J. (1986). Random fractals. Math. Proc. Camb. Phil. Soc. 100, 559582.10.1017/S0305004100066299CrossRefGoogle Scholar
Gatzouras, D. (2000). Lacunarity of self-similar and stochastically self-similar sets. Trans. Amer. Math. Soc. 352, 19531983.10.1090/S0002-9947-99-02539-8CrossRefGoogle Scholar
Graf, S. (1987). Statistically self-similar fractals. Prob. Theory Relat. Fields 74, 357392.10.1007/BF00699096CrossRefGoogle Scholar
Klatt, M. A., Schröder-Turk, G. E. and Mecke, K. (2017). Anisotropy in finite continuum percolation: threshold estimation by Minkowski functionals. J. Statist. Mech. 2017, article no. 023302.10.1088/1742-5468/aa5a19CrossRefGoogle Scholar
Klatt, M. A. and Winter, S. (2020). Geometric functionals of fractal percolation. Adv. Appl. Prob. 52, 10851126.10.1017/apr.2020.33CrossRefGoogle Scholar
Last, G. and Ochsenreither, E. (2014). Percolation on stationary tessellations: models, mean values, and second-order structure. J. Appl. Prob. 51, 311332.10.1239/jap/1417528483CrossRefGoogle Scholar
Mandelbrot, B. B. (1974). Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331358.10.1017/S0022112074000711CrossRefGoogle Scholar
Mauldin, R. D. and Williams, S. C. (1986). Random recursive constructions: asymptotic geometric and topological properties. Trans. Amer. Math. Soc. 295, 325346.10.1090/S0002-9947-1986-0831202-5CrossRefGoogle Scholar
Neher, R. A., Mecke, K. and Wagner, H. (2008). Topological estimation of percolation thresholds. J. Statist. Mech. 2008, article no. P01011.10.1088/1742-5468/2008/01/P01011CrossRefGoogle Scholar
Nerman, O. (1981). On the convergence of supercritical general (C-M-J) branching processes. Z. Wahrscheinlichkeitsth. 57, 365395.10.1007/BF00534830CrossRefGoogle Scholar
Newman, M. E. J. and Ziff, R. M. (2000). Efficient Monte Carlo algorithm and high-precision results for percolation. Phys. Rev. Lett. 85, 41044107.10.1103/PhysRevLett.85.4104CrossRefGoogle ScholarPubMed
Patzschke, N. (1997). The strong open set condition in the random case. Proc. Amer. Math. Soc. 125, 21192125.10.1090/S0002-9939-97-03816-1CrossRefGoogle Scholar
Rams, M. and Simon, K. (2014). The dimension of projections of fractal percolations. J. Statist. Phys. 154, 633655.10.1007/s10955-013-0886-6CrossRefGoogle Scholar
Rams, M. and Simon, K. (2015). Projections of fractal percolations. Ergod. Theory Dynam. Systems 35, 530545.10.1017/etds.2013.45CrossRefGoogle Scholar
Schneider, R. (2014). Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press.Google Scholar
Schneider, R. and Weil, W. (2008). Stochastic and Integral Geometry. Springer, Berlin.10.1007/978-3-540-78859-1CrossRefGoogle Scholar
Zähle, M. (2011). Lipschitz–Killing curvatures of self-similar random fractals. Trans. Amer. Math. Soc. 363, 26632684.10.1090/S0002-9947-2010-05198-0CrossRefGoogle Scholar