We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study Morita equivalence for idempotent rings with involution. Following the ideas of Rieffel, we define Rieffel contexts, and we also introduce Morita $*$-contexts and enlargements for rings with involution. We prove that two idempotent rings with involution have a joint enlargement if and only if they are connected by a unitary and full Rieffel context. These conditions are also equivalent to having a unitary and surjective Morita $*$-context between those rings. We also examine how the mentioned conditions are connected to the existence of certain equivalence functors between the categories of firm modules over the given rings with involution.
We introduce the notions of quasi-Laurent and Laurent families of simple modules over quiver Hecke algebras of arbitrary symmetrizable types. We prove that such a family plays a similar role of a cluster in quantum cluster algebra theory and exhibits a quantum Laurent positivity phenomenon similar to the basis of the quantum unipotent coordinate ring $\mathcal {A}_q(\mathfrak {n}(w))$, coming from the categorification. Then we show that the families of simple modules categorifying Geiß–Leclerc–Schröer (GLS) clusters are Laurent families by using the Poincaré–Birkhoff–Witt (PBW) decomposition vector of a simple module $X$ and categorical interpretation of (co)degree of $[X]$. As applications of such $\mathbb {Z}\mspace {1mu}$-vectors, we define several skew-symmetric pairings on arbitrary pairs of simple modules, and investigate the relationships among the pairings and $\Lambda$-invariants of $R$-matrices in the quiver Hecke algebra theory.
For an action of a finite group on a finite EI quiver, we construct its ‘orbifold’ quotient EI quiver. The free EI category associated to the quotient EI quiver is equivalent to the skew group category with respect to the given group action. Specializing the result to a finite group action on a finite acyclic quiver, we prove that, under reasonable conditions, the skew group category of the path category is equivalent to a finite EI category of Cartan type. If the ground field is of characteristic $p$ and the acting group is a cyclic $p$-group, we prove that the skew group algebra of the path algebra is Morita equivalent to the algebra associated to a Cartan matrix, defined in [C. Geiss, B. Leclerc, and J. Schröer, Quivers with relations for symmetrizable Cartan matrices I: Foundations, Invent. Math. 209 (2017), 61–158]. We apply the Morita equivalence to construct a categorification of the folding projection between the root lattices with respect to a graph automorphism. In the Dynkin cases, the restriction of the categorification to indecomposable modules corresponds to the folding of positive roots.
The algebraic K-theory of Lawvere theories is a conceptual device to elucidate the stable homology of the symmetry groups of algebraic structures such as the permutation groups and the automorphism groups of free groups. In this paper, we fully address the question of how Morita equivalence classes of Lawvere theories interact with algebraic K-theory. On the one hand, we show that the higher algebraic K-theory is invariant under passage to matrix theories. On the other hand, we show that the higher algebraic K-theory is not fully Morita invariant because of the behavior of idempotents in non-additive contexts: We compute the K-theory of all Lawvere theories Morita equivalent to the theory of Boolean algebras.
We characterize the generalized Auslander–Reiten duality on the category of finitely presented modules over some certain Hom-finite category. Examples include the category FI of finite sets with injections, and the one VI of finite-dimensional vector spaces with linear injections over a finite field.
For a three-dimensional quantum polynomial algebra
$A=\mathcal {A}(E,\sigma )$
, Artin, Tate, and Van den Bergh showed that A is finite over its center if and only if
$|\sigma |<\infty $
. Moreover, Artin showed that if A is finite over its center and
$E\neq \mathbb P^{2}$
, then A has a fat point module, which plays an important role in noncommutative algebraic geometry; however, the converse is not true in general. In this paper, we will show that if
$E\neq \mathbb P^{2}$
, then A has a fat point module if and only if the quantum projective plane
${\sf Proj}_{\text {nc}} A$
is finite over its center in the sense of this paper if and only if
$|\nu ^{*}\sigma ^{3}|<\infty $
where
$\nu $
is the Nakayama automorphism of A. In particular, we will show that if the second Hessian of E is zero, then A has no fat point module.
Let $U_q'({\mathfrak {g}})$ be a quantum affine algebra with an indeterminate $q$, and let $\mathscr {C}_{\mathfrak {g}}$ be the category of finite-dimensional integrable $U_q'({\mathfrak {g}})$-modules. We write $\mathscr {C}_{\mathfrak {g}}^0$ for the monoidal subcategory of $\mathscr {C}_{\mathfrak {g}}$ introduced by Hernandez and Leclerc. In this paper, we associate a simply laced finite-type root system to each quantum affine algebra $U_q'({\mathfrak {g}})$ in a natural way and show that the block decompositions of $\mathscr {C}_{\mathfrak {g}}$ and $\mathscr {C}_{\mathfrak {g}}^0$ are parameterized by the lattices associated with the root system. We first define a certain abelian group $\mathcal {W}$ (respectively $\mathcal {W} _0$) arising from simple modules of $\mathscr {C}_{\mathfrak {g}}$ (respectively $\mathscr {C}_{\mathfrak {g}}^0$) by using the invariant $\Lambda ^\infty$ introduced in previous work by the authors. The groups $\mathcal {W}$ and $\mathcal {W} _0$ have subsets $\Delta$ and $\Delta _0$ determined by the fundamental representations in $\mathscr {C}_{\mathfrak {g}}$ and $\mathscr {C}_{\mathfrak {g}}^0$, respectively. We prove that the pair $( \mathbb {R} \otimes _\mathbb {\mspace {1mu}Z\mspace {1mu}} \mathcal {W} _0, \Delta _0)$ is an irreducible simply laced root system of finite type and that the pair $( \mathbb {R} \otimes _\mathbb {\mspace {1mu}Z\mspace {1mu}} \mathcal {W} , \Delta )$ is isomorphic to the direct sum of infinite copies of $( \mathbb {R} \otimes _\mathbb {\mspace {1mu}Z\mspace {1mu}} \mathcal {W} _0, \Delta _0)$ as a root system.
In noncommutative algebraic geometry an Artin–Schelter regular (AS-regular) algebra is one of the main interests, and every three-dimensional quadratic AS-regular algebra is a geometric algebra, introduced by Mori, whose point scheme is either
$\mathbb {P}^{2}$
or a cubic curve in
$\mathbb {P}^{2}$
by Artin et al. [‘Some algebras associated to automorphisms of elliptic curves’, in: The Grothendieck Festschrift, Vol. 1, Progress in Mathematics, 86 (Birkhäuser, Basel, 1990), 33–85]. In the preceding paper by the authors Itaba and Matsuno [‘Defining relations of 3-dimensional quadratic AS-regular algebras’, Math. J. Okayama Univ. 63 (2021), 61–86], we determined all possible defining relations for these geometric algebras. However, we did not check their AS-regularity. In this paper, by using twisted superpotentials and twists of superpotentials in the Mori–Smith sense, we check the AS-regularity of geometric algebras whose point schemes are not elliptic curves. For geometric algebras whose point schemes are elliptic curves, we give a simple condition for three-dimensional quadratic AS-regular algebras. As an application, we show that every three-dimensional quadratic AS-regular algebra is graded Morita equivalent to a Calabi–Yau AS-regular algebra.
Given a compact Kähler manifold X, it is shown that pairs of the form
$(E,\, D)$
, where E is a trivial holomorphic vector bundle on X, and D is an integrable holomorphic connection on E, produce a neutral Tannakian category. The corresponding pro-algebraic affine group scheme is studied. In particular, it is shown that this pro-algebraic affine group scheme for a compact Riemann surface determines uniquely the isomorphism class of the Riemann surface.
We study the question of dualizability in higher Morita categories of locally presentable tensor categories and braided tensor categories. Our main results are that the 3-category of rigid tensor categories with enough compact projectives is 2-dualizable, that the 4-category of rigid braided tensor categories with enough compact projectives is 3-dualizable, and that (in characteristic zero) the 4-category of braided multi-fusion categories is 4-dualizable. Via the cobordism hypothesis, this produces respectively two-, three- and four-dimensional framed local topological field theories. In particular, we produce a framed three-dimensional local topological field theory attached to the category of representations of a quantum group at any value of $q$.
For a finite dimensional algebra A, the bounded homotopy category of projective A-modules and the bounded derived category of A-modules are dual to each other via certain categories of locally-finite cohomological functors. We prove that the duality gives rise to a 2-categorical duality between certain strict 2-categories involving bounded homotopy categories and bounded derived categories, respectively. We apply the 2-categorical duality to the study of triangle autoequivalence groups.
We introduce and study the notion of Gorenstein silting complexes, which is a generalization of Gorenstein tilting modules in Gorenstein-derived categories. We give the equivalent characterization of Gorenstein silting complexes. We give a sufficient condition for a partial Gorenstein silting complex to have a complement.
Linckelmann and Murphy have classified the Morita equivalence classes of p-blocks of finite groups whose basic algebra has dimension at most
$12$
. We extend their classification to dimension
$13$
and
$14$
. As predicted by Donovan’s conjecture, we obtain only finitely many such Morita equivalence classes.
Let $R$ be a ring and $T$ be a good Wakamatsu-tilting module with $S=\text{End}(T_{R})^{op}$. We prove that $T$ induces an equivalence between stable repetitive categories of $R$ and $S$ (i.e., stable module categories of repetitive algebras $\hat{R}$ and ${\hat{S}}$). This shows that good Wakamatsu-tilting modules seem to behave in Morita theory of stable repetitive categories as that tilting modules of finite projective dimension behave in Morita theory of derived categories.
We show that a directed graph $E$ is a finite graph with no sinks if and only if, for each commutative unital ring $R$, the Leavitt path algebra $L_{R}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if the $C^{\ast }$-algebra $C^{\ast }(E)$ is unital and $\text{rank}(K_{0}(C^{\ast }(E)))=\text{rank}(K_{1}(C^{\ast }(E)))$. Let $k$ be a field and $k^{\times }$ be the group of units of $k$. When $\text{rank}(k^{\times })<\infty$, we show that the Leavitt path algebra $L_{k}(E)$ is isomorphic to an algebraic Cuntz–Krieger algebra if and only if $L_{k}(E)$ is unital and $\text{rank}(K_{1}(L_{k}(E)))=(\text{rank}(k^{\times })+1)\text{rank}(K_{0}(L_{k}(E)))$. We also show that any unital $k$-algebra which is Morita equivalent or stably isomorphic to an algebraic Cuntz–Krieger algebra, is isomorphic to an algebraic Cuntz–Krieger algebra. As a consequence, corners of algebraic Cuntz–Krieger algebras are algebraic Cuntz–Krieger algebras.
Keller proved in 1999 that the Gerstenhaber algebra structure on the Hochschild cohomology of an algebra is an invariant of the derived category. In this paper, we adapt his approach to show that the Gerstenhaber algebra structure on the Tate–Hochschild cohomology of an algebra is preserved under singular equivalences of Morita type with level, a notion introduced by the author in previous work.
Using that integrable derivations of symmetric algebras can be interpreted in terms of Bockstein homomorphisms in Hochschild cohomology, we show that integrable derivations are invariant under the transfer maps in Hochschild cohomology of symmetric algebras induced by stable equivalences of Morita type. With applications in block theory in mind, we allow complete discrete valuation rings of unequal characteristic.
Let $\unicode[STIX]{x1D6EC}$ be a connected hereditary artin algebra. We show that the set of functorially finite torsion classes of $\unicode[STIX]{x1D6EC}$-modules is a lattice if and only if $\unicode[STIX]{x1D6EC}$ is either representation-finite (thus a Dynkin algebra) or $\unicode[STIX]{x1D6EC}$ has only two simple modules. For the case of $\unicode[STIX]{x1D6EC}$ being the path algebra of a quiver, this result has recently been established by Iyama–Reiten–Thomas–Todorov and our proof follows closely some of their considerations.
We study two notions of purity in categories of sheaves: the categorical and the geometric. It is shown that pure injective envelopes exist in both cases under very general assumptions on the scheme. Finally, we introduce the class of locally absolutely pure (quasi-coherent) sheaves with respect to the geometrical purity, and characterize locally Noetherian closed subschemes of a projective scheme in terms of the new class.
Recently, a new equivalence relation between weak* closed operator spaces acting on Hilbert spaces has appeared. Two weak* closed operator spaces ${\mathcal{U}}$, ${\mathcal{V}}$ are called weak TRO equivalent if there exist ternary rings of operators ${\mathcal{M}}$i, i = 1, 2 such that ${\mathcal{U}}=[{\mathcal{M}}_2{\mathcal{V}}{\mathcal{M}}_1^*]^{-w^*}, {\mathcal{V}}=[{\mathcal{M}}_2^*{\mathcal{U}}{\mathcal{M}}_1]^{-w^*}.$ Weak TRO equivalent spaces are stably isomorphic, and conversely, stably isomorphic dual operator spaces have normal completely isometric representations with weak TRO equivalent images. In this paper, we prove that if ${\mathcal{U}}$ and ${\mathcal{V}}$ are weak TRO equivalent operator spaces and the space of I × I matrices with entries in ${\mathcal{U}}$, MIw(${\mathcal{U}}$), is hyperreflexive for suitable infinite I, then so is MIw(${\mathcal{V}}$). We describe situations where if ${\mathcal{L}}$1, ${\mathcal{L}}$2 are isomorphic lattices, then the corresponding algebras Alg($\mathcal{L}$1), Alg($\mathcal{L}$2) have the same complete hyperreflexivity constant.