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Abstract

The algebraic K-theory of Lawvere theories is a conceptual device to elucidate the stable
homology of the symmetry groups of algebraic structures such as the permutation groups
and the automorphism groups of free groups. In this paper, we fully address the question of
how Morita equivalence classes of Lawvere theories interact with algebraic K-theory. On the
one hand, we show that the higher algebraic K-theory is invariant under passage to matrix
theories. On the other hand, we show that the higher algebraic K-theory is not fully Morita
invariant because of the behavior of idempotents in non-additive contexts: We compute the
K-theory of all Lawvere theories Morita equivalent to the theory of Boolean algebras.

2020 Mathematics Subject Classification: 19D23 (Primary); 06E05, 16D90, 18F25, 18C10,
55P42 (Secondary)

Introduction

Quillen’s seminal work [27] used algebraic K-theory to organise our thinking about the
stable homology of general linear groups. This initiated generalisations to contexts far
broader than that of rings. In this paper, we restrict our attention to Lawvere’s algebraic
theories. These structures provide a happy medium between rings and symmetric monoidal
categories: no higher-categorical language is required, and they are much more flexible than
rings. For instance, the stable homology of the symmetric groups and of the automorphism
groups of free groups [11] fit into this context as well. Our results are motivated by such sta-
ble homology computations, the starting point being the following fact (see Theorem 2·6):
for every Lawvere theory T , there is an isomorphism

colimr H∗(Aut(Tr))∼=H∗
(
�∞0 K(T)

)
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between the stable homology of the automorphism groups of finitely generated free objects
of the theory T and the homology of the zero component �∞0 K(T) of the algebraic K-theory
space �∞K(T). The surprising power of this observation comes from two sources. First, the
K-theory space or spectrum is often easier to describe than its homology. This happens, for
instance, for the symmetric groups. Second, algebraic K-theory can sometimes be computed
without explicitly using the groups Aut(Tr) (see [38], for example). Here, we present a new
stable homology computation, for the theory of Boolean algebras, phrased once again in
terms of algebraic K-theory.

THEOREM A. For the algebraic K-theory of the Lawvere theory Boole of Boolean
algebras, we have K∗(Boole)∼= π∗(S)/2–power torsion.

In this result, the groups π∗(S) are the stable homotopy groups of spheres. These groups
are the K-groups of the initial Lawvere theory of sets, but the resulting homomorphism
to K∗(Boole) is not surjective (see Proposition 5·3). Theorem A is a consequence of the
following spectrum-level result, proved as Theorem 5·1, which is also a generalisation from
Boolean algebras to many-valued logics as modeled by the Lawvere theories Postv of Post
algebras of valence v. The superscript in R× refers to the units of a ring (spectrum) R.

THEOREM B. For every integer v � 2, there is a homotopy pullback square

K(Postv) S[1/v]×

HZ v HZ[1/v]×

of spectra.

These results can be conceptualised in terms of Morita invariance. Two rings are called
Morita equivalent if they have equivalent categories of modules. Morita equivalent rings
must have isomorphic higher algebraic K-groups (see [43, IV Ex. 1·21, IV 6·3·5]). More
generally, two Lawvere theories are called Morita equivalent if their categories of models
are equivalent. This is the case if and only one of them is an idempotent modification of a
matrix theory of the other; see the brief review in Section 4. We first prove a positive result
(see Theorem 4·1), which we expect to be a useful tool in stable homology computations.

THEOREM C. The higher algebraic K-theory of Lawvere theories is invariant under
passage to matrix theories.

Because we define the algebraic K-theory of Lawvere theories in terms of free models,
there is no hope of extending this result to K0: there are even Morita equivalent rings that
have non-isomorphic K0’s when these K-groups are defined using free modules only. This is
due, of course, to the presence of projectives that are not free. Arguably, the ability to detect
those non-free projectives is one desirable feature of lower K-theory. For rings, we could
have built that feature into our theory by completing idempotents. In an additive category,
all retracts have complements, and this completion does not change the higher algebraic
K-theory, only K0. However, for general Lawvere theories, this fix for K0 is not possible
without changing the higher algebraic K-theory: we show that completing idempotents can
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change the higher algebraic K-groups. In fact, since the Lawvere theories Postv are all Morita
equivalent, our computations in Theorem B show the following:

THEOREM D. The higher algebraic K-theory of Lawvere theories is not Morita invariant.

We can rephrase this result in terms of the “syntax” of a Lawvere theory, which is defined
by the free models, and its “semantics,” which comprises all models: the higher algebraic
K-theory of an algebraic theory depends essentially on the syntax of the theory, rather than
merely its semantics. We refer to Lawvere’s writings [13, 14, 15] for the distinction between
syntax and semantics in this context. From the perspective of mathematical logic and topos
theory [7], different notions of equivalence of theories, both semantic and syntactical, have
recently been discussed and compared in [4, 40].

While stable homology computations are one of our motivations for considering the
algebraic K-theory of Lawvere theories, the related issue of homological stability is not
the focus of the present work. We refer to the paper [29] by Randal–Williams and Wahl,
which discusses the homological stability problem in a more general framework than ours.
Nonetheless, the specific setting of Lawvere theories balances rigidity and flexibility in
a way that suggests it to be particularly amenable to homological stability questions as
well. Additional motivation for the algebraic K-theory of Lawvere theories, in the form
of multiplicative matters and applications to assembly maps, is discussed in [5].

Outline. Section 1 recalls Lawvere’s categorical approach to universal algebra and sets up
the notation that we use. In Section 2, we define the K-theory of algebraic theories and
show that it encodes the stable homology of the automorphism groups of the free models.
A plethora of examples that do not come from rings and modules are presented in Section 3
before we start our discussion of Morita invariance with our theorem for matrix theories in
Section 4. The final Section 5 contains the computation for the theory of Boolean algebras
and all theories equivalent to them.

1. Lawvere theories

We need to review the basic notions and set up our notation for Lawvere theories [13].
Some textbook references are [1, 6, 23, 32].

Choose a skeleton E of the category of finite sets and (all) maps between them. For each
integer r � 0 such a category has a unique object with precisely r elements, and there are
no other objects. For the sake of explicitness, let us choose the model r= {a ∈Z | 1 � a � r}
for such a set. A set with r+ s elements is the (categorical) sum, or co-product, of a set with
r elements and a set with s elements.

Definition 1·1. A Lawvere theory T = (FT , FT ) is a pair consisting of a small category
FT together with a functor FT : E→ FT that is bijective on sets of objects and that pre-
serves sums. This means that the canonical map FT (r)+ FT (s)→ FT (r+ s) induced by the
canonical injections is an isomorphism for all sets r and s in E.

The image of the set r with r elements under the functor FT : E→ FT will be written Tr,
so that the object Tr is the sum in the category FT of r copies of the object T1.

We recall two of the most important classes of examples of Lawvere theories.

Example 1·2. Let A be a ring. Let FA be the full subcategory of the category ModA of
A–modules spanned by the modules A⊕r for r � 0. This category is a skeleton of the category
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of finitely generated, free A–modules. The functor FA : E→ FA that sends the set with r
elements to the free module A⊕r with r generators is a Lawvere theory, called the theory of
A–modules. Note that A⊕0 = 0 is the 0 module. In particular, for the initial ring A=Z, we
have the Lawvere theory of abelian groups.

Rings can be very complicated, and this is even more true for Lawvere theories, which
are significantly more general.

Example 1·3. Let G be a group. Let FG be (a skeleton of) the full subcategory of the
category of G–sets on the free G–sets with finitely many orbits: those of the form

∐
r G. The

functor FG : E→ FG sending r to
∐

r G is a Lawvere theory, called the theory of G–sets. In
particular, for the trivial group G= {e}, we have the Lawvere theory E of sets.

Remark 1·4. Some authors prefer to work with the opposite category Fop
T , so that the

object Tr is the product (rather than the co-product) of r copies of the object T1. For exam-
ple, this was Lawvere’s convention when he introduced this notion in [13]. Our convention
reflects the point of view that the object Tr should be thought of as the free T–model (or
T–algebra) on r generators, covariantly in r (or rather in E). To make this precise, recall the
definition of a model (or algebra) for a theory T.

Definition 1·5. Given a Lawvere theory T , a T–model (or T–algebra) is a presheaf X (of
sets) on the category FT that sends (categorical) sums in FT to (categorical, i.e. Cartesian)
products of sets. (This means that the canonical map X(Tr + Ts)→ X(Tr)× X(Ts) induced
by the injections is a bijection for all sets r and s in E.) We write MT for the category of T–
models, and we write MT (X, Y) to denote the set of morphisms X→ Y between T–algebras.
Such a morphism is defined to be a map of presheaves, i.e., a natural transformation, so that
MT is a full subcategory of the category of presheaves on FT .

The values of a T–model are determined up to isomorphism by the value at T1, and we
often use the same notation for a model and its value at T1.

Example 1·6. The categories of models for the Lawvere theories of Examples 1·2 and 1·3
are the categories of A–modules and G–sets, respectively. For example, the action of G on
itself from the right gives for each g ∈G a G–map g :

∐
1 G→∐

1 G in the category FG

of Example 1·3. Given a model X : Fop
G → Sets, the set maps X(g) : X(

∐
1 G)→ X(

∐
1 G)

combine to produce the action of the group G on the set X(
∐

1 G).

Example 1·7. The co-variant Yoneda embedding FT→ Pre(FT ) sends the object Tr of
FT to the presheaf Ts 	→ FT (Ts, Tr) represented by it. Such a presheaf is readily checked to
be a T–model. We refer to a T–model of this form as free. The definitions unravel to give
natural bijections MT (Tr, X)∼= Xr for T–models X, so that Tr is indeed a free T–model on r
generators.

We can summarise the situation as follows. The Yoneda embedding of FT into presheaves
on FT factors FT→MT→ Pre(FT ) through the category MT of T–models. Both functors
are fully faithful, and the free T–models are those in the (essential) image of the first functor.
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Definition 1·8. A morphism S→ T between Lawvere theories is a functor L : FS→ FT

that (strictly) preserves sums. This is equivalent to the condition that FT ∼= L ◦ FS, i.e., that
L is a map under E.

It is common to describe a morphism S→ T between two Lawvere theories by giving a
functor R : MT→MS that is compatible with the forgetful functors to the category ME of
sets. In this case, R has a left-adjoint by Freyd’s adjoint functor theorem and L is induced by
the restriction of the left adjoint to R to free models.

For any Lawvere theory T , the category MT of T–models is complete and cocomplete.
Limits are constructed pointwise, and the existence of colimits follows from the adjoint func-
tor theorem. The category MT becomes symmetric monoidal with respect to the (categorical)
sum, and the unit object T0 for this structure is also an initial object in the category MT .

2. Algebraic K-theory and stable homology

In this section, we define the algebraic K-theory spectrum K(T) of a Lawvere theory T ,
show how it encodes the stable homology of the automorphism groups of free T–models,
and prove our positive results on Morita invariance.

We first specify the constructions of K-theory we use in this paper. Our primary approach
is to view Lawvere theories as a special case of symmetric monoidal categories and apply
the classic constructions of K-theory for the latter. There are several ways of approaching
these constructions; we begin with a brief overview.

Let S denote a symmetric monoidal groupoid. For the following to make sense, S needs
to satisfy an additional assumption, but we show in Proposition 2·4 that this is always the
case for the categories we are interested in. We can then pass to Quillen’s categorification
S−1S of the Grothendieck construction. The canonical morphism BS→BS−1S between the
classifying spaces is a group completion, and the target is an infinite loop space. We refer to
[12] and Thomason’s particularly brief and enlightening discussion [39] for detail. To build
a K-theory spectrum K(S) with underlying infinite loop space �∞K(S)�BS−1S, we can
use Segal’s definition of the algebraic K-theory of a symmetric monoidal category in terms
of �–spaces. The equivalence comes from [33, section 4], where he shows that �∞K(S) is
also a group completion of BS.

Definition 2·1. Let T be a Lawvere theory. The algebraic K-theory of T is the spectrum

K(T)=K(F×T ), (2·1)

that is, the spectrum corresponding to the symmetric monoidal groupoid F×T of isomor-
phisms in the symmetric monoidal category FT of finitely generated free T–models, where
the monoidal structure is given by the categorical sum.

Since the category FT can be identified with the symmetric monoidal category of finitely
generated free T–models, Definition 2·1 concerns the algebraic K-theory of finitely gen-
erated free T–models. In particular, the group K0(T)= π0K(T) is the Grothendieck group
of isomorphism classes of finitely generated free T–models. This group is always cyclic,
generated by the isomorphism class [T1] of the free T–model on one generator. However,
the group K0(T) does not have to be infinite cyclic, as the Examples 3·7 and 4·2 below
show.
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Remark 2·2. A morphism S→ T of Lawvere theories (as in Definition 1·8) induces, via
the left-adjoint functor FS→ FT , a morphism K(S)→K(T) of algebraic K-theory spectra.
The left adjoint FS→ FT sends the free S–model S1 on one generator to the free T–model
T1 on one generator. It follows that the induced homomorphism K0(S)→K0(T) between
cyclic groups is surjective, being the identity on representatives.

One reason for interest in the algebraic K-theory of Lawvere theories is the relation to the
stable homology of the sequence of automorphism groups attached to a Lawvere theory. We
now make this relation precise.

Let T be a Lawvere theory. The automorphism groups of the free algebras Tr often turn
out to be very interesting (see the examples in Section 3 below). We use the notation Aut(Tr)
for these groups.

Given integers r, s � 0, there is a stabilisation homomorphism

Aut(Tr)−→Aut(Tr+s) (2·2)

that ‘adds’ the identity of the object Ts in the sense of the categorical sum +, and we use
additive notation for this operation. More precisely, stabilisation sends an automorphism u
of Tr to the automorphism of Tr+s that makes the diagram

Tr+s Tr+s

Tr + Ts

∼=
u+Ts
∼= Tr + Ts

∼=

commute. By abuse of notation, this automorphism of the object Tr+s will sometimes also
be denoted by u+ Ts.

Remark 2·3. The alert reader will have noticed that we have not specified our choice of
isomorphism Tr + Ts ∼= Tr+s in the preceding diagram. While the requirement that Tr+s be
the sum of Tr and Ts provides a canonical identification here, we could in fact use any choice
of isomorphism. All such choices obviously differ by conjugation by an automorphism of
Tr+s, so that they induce the same map in homology, which is all that matters for the purposes
of this section.

PROPOSITION 2·4. For every Lawvere theory T, the stabilisation maps Aut(Tr)→
Aut(Tr+1) are injective.

Proof. It is enough to show that the kernels are trivial. This is clear for r= 0, since T0 is
initial, so that Aut(T0) is the trivial group. For positive r we can choose a retraction ρ of the
canonical embedding σ : Tr→ Tr+1. If u is in the kernel of the stabilisation map, then we
have the following commutative diagram.

Tr

σ

u Tr

σ

Tr+1 id
Tr+1 ρ

Tr

It implies u= id.
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Stabilisation leads to a diagram

Aut(T0)−→Aut(T1)−→Aut(T2)−→Aut(T3)−→ · · · (2·3)

of groups for every Lawvere theory T . We write colimr Aut(Tr) for the colimit of the diagram
(2·3) with respect to the stabilisation maps. This is the stable automorphism group for the
Lawvere theory T .

Let us record the following group theoretical property of the stable automorphism groups.
This is presumably well known already in more or less generality. We nevertheless include
an argument here for completeness’ sake.

PROPOSITION 2·5. For every Lawvere theory T, the commutator subgroup of the stable
automorphism group colimr Aut(Tr) is perfect.

Proof. Given a commutator in the group colimr Aut(Tr), we can represent it as [u, v] for a
pair u, v of automorphisms in the group Aut(Tr) for some r. Allowing us thrice the space, in
the group Aut(T3r) we have the identity

[u, v]+ id(T2r)= [u+ u−1 + id(Tr), v+ id(Tr)+ v−1].

It therefore suffices to prove that each element of the form w+w−1 is a commutator. This is
a version of Whitehead’s lemma that holds in every symmetric monoidal category: whenever
there are automorphisms w1, . . . , wn of an object such that their composition w1 · · ·wn is the
identity, then w1 + · · · +wn is a commutator. We apply this to the category FT with respect
to the monoidal product given by categorical sum +.

After these preliminaries, we now move on to give another model for the algebraic K-
theory space of a Lawvere theory T , one that uses the Quillen plus construction. This
construction led to Quillen’s historically first definition of the algebraic K-theory of a ring
[26] (see also [17] and [42]).

The plus construction can be applied to connected spaces X for which the fundamen-
tal groups have perfect commutator subgroups. It produces a map X→ X+ into another
connected space X+ with the same integral homology, and such that the induced maps on
fundamental groups are the abelianization. In fact, these two properties characterise the plus
construction. By Proposition 2·5, the commutator subgroup of colimr Aut(Tr) is perfect.
Therefore, the plus construction can be applied the classifying space Bcolimr Aut(Tr) in
order to produce another space Bcolimr Aut(Tr)+.

THEOREM 2·6. For every Lawvere theory T, there is an equivalence

�∞K(T)�K0(T)×Bcolimr Aut(Tr)+ (2·4)

of spaces.

Proof. Quillen, in the his proof that the plus construction of K-theory agrees with the one
obtained from the Q-construction, takes an intermediate step (see [12, p. 224]): he shows
that the plus construction, together with K0, gives a space that is equivalent to the clas-
sifying space of his categorification S−1S of the Grothendieck construction of a suitable
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symmetric monoidal category S. This part of his argument applies here to show that there is
an equivalence

K0(T)×Bcolimr Aut(Tr)+ �B
((

F×T
)−1

F×T
)

of spaces for every Lawvere theory T . The claim follows because we already know that the
right hand side has the homotopy type of �∞K(T).

In general, there seems to be no reason to believe that an artificial product such as the
one in (2·4) would form a meaningful whole (see [31, warning 2·2·9]). The present case is
special because K0(T) is generated by the isomorphism class of the free T–algebra T1 of
rank 1. Other constructions of the same homotopy type do not separate the group K0(T)
of components from the rest of the space. One way or another, note that all components
of the algebraic K-theory space K(T) are equivalent; the group K0(T) of components acts
transitively on the infinite loop space �∞K(T) up to homotopy.

Since the plus construction does not change homology, the definition of the algebraic
K-theory space immediately gives the following result.

THEOREM 2·7. For every Lawvere theory T, there is an isomorphism

colimr H∗(Aut(Tr))∼=H∗
(
�∞0 K(T)

)

between the stable homology of the automorphism groups of finitely generated free objects
of the theory T and the homology of the zero component �∞0 K(T) of the algebraic K-theory
space �∞K(T).

Ideally, the algebraic K-theory spectrum K(T) is more accessible and easier to under-
stand and describe than the stable automorphism group colimr Aut(Tr). This is not at all
plausible from the definition; only the now-classical methods of algebraic K-theory, which
have been developed over half a century, allow us to take this stance. From this perspective,
Theorem 2·7 should be thought of as a computation of the group homology, once the spec-
trum K(T) is identified. The examples in Sections 3 and 5 give a taste of the flavor of some
non-trivial (and non-linear) cases.

3. Some non-linear examples

The aim of this section is to demonstrate the interest in the algebraic K-theory K(T) of
Lawvere theories T beyond what are arguably the most fundamental examples, the theories
of modules over rings:

Example 3·1. Consider the theory of modules over a ring A, as in Example 1·2. The
automorphism group of the free A–module Ar of rank r is the general linear group Aut(Ar)=
GLr(A). The algebraic K-theory spectrum K(A) is Quillen’s algebraic K-theory (actually, the
‘free’ version). In particular K(Z) is the K-theory spectrum of the Lawvere theory of abelian
groups, in the guise of Z–modules.

We can now move on to discuss non-linear examples: theories that are not given as
modules over a ring.
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Example 3·2. Consider the initial theory E of sets. The automorphisms are just the per-
mutations, and the automorphism group Aut{1, . . . , r} =�(r) is the symmetric group on r
symbols. The algebraic K-theory is the sphere spectrum: K(E)� S. This is one version of the
Barratt–Priddy theorem [3, 25]. We go into detail so that we can use the same notation later
as well: Let Q��∞S denote the infinite loop space of stable self-maps of the spheres. The
path components of the space Q are indexed by the degree of the stable maps, as a reflec-
tion of π0(S)=Z, and we will write Q(r) for the component of maps of degree r. There are
maps B�(r)→Q(r) which are homology isomorphisms in a range that increases with r by
Nakaoka stability [22]. These maps fit together to induce a homology isomorphism

B�(∞)−→Q(∞) (3·1)

between the colimits. The stabilisation Q(r)→Q(r+ 1) is always an equivalence, so that all
the maps Q(r)→Q(∞) to the colimit are equivalences as well. Passing to group comple-
tions, the map (3·1) induces an equivalence �∞0 K(E)��∞0 S of infinite loop spaces, so that
K(E)� S as spectra. We refer to Morava’s notes [21] for more background and for relations
to the algebraic K-theory of the finite fields Fq when the number q of elements goes to 1.

Example 3·3. More generally, for any discrete group G, we can consider the Lawvere
theory of G–sets. The algebraic K-theory spectrum of the Lawvere theory of G–sets is
K(G–Sets)��∞+ (BG), the suspension spectrum of the classifying space BG (with a dis-
joint base point +). This observation is attributed to Segal. In particular, for the Lawvere
theory Z–sets, this gives

K(Z–Sets)��∞+ (BZ)��∞+ (S1)� S∨�S.

The theory Z–sets is the theory of permutations [36]: a model is a set together with a
permutation of that set.

Example 3·4. Consider the theory Groups of (all) groups. In this case, the automorphism
groups Aut(Fr) are the automorphism groups of the free groups Fr on r generators. The
algebraic K-theory space has been shown to be the infinite loop space underlying the sphere
spectrum by Galatius [11]: the unit S�K(Sets)→K(Groups) is an equivalence.

The theory of abelian groups has been dealt with in Example 3·1.

Example 3·5. There is an interpolation between the theory of all groups and the theory of
all abelian groups by the theories Nilc of nilpotent groups of a certain class c, with 1 � c �
∞. There is a corresponding diagram

...

K(Nil 3)

K(Nil 2)

S K(Groups) K(Abel) K(Z)
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of algebraic K-theory spectra. This tower has been studied from the point of view of
homological stability and stable homology in [35] and [37], respectively.

Example 3·6. In contrast to groups, the algebraic K-theory of the Lawvere theory
Monoids of (associative) monoids (with unit) is easy to compute: the free monoid on a
set X is modeled on the set of words with letters from that set, and it has a unique basis: the
subset of words of length one, which can be identified with X. This implies that the automor-
phism group of the free monoid on r generators is isomorphic to the symmetric group �(r),
so that the map K(E)→K(Monoids) from the algebraic K-theory of the initial theory E of
sets is an equivalence. By Example 3·2, we get an equivalence K(Monoids)� S of spectra.
It follows, again from Galatius’s theorem (see Example 3·4), that the canonical morphism
K(Monoids)→K(Groups) is an equivalence. It would be interesting to see a proof of this
fact that does not depend on his result.

Example 3·7. Let a � 2 be an integer. A Cantor algebra of arity a is a set X together
with a bijection Xa→ X. The Cantor algebras of arity a are the models for a Lawvere theory
Cantora, and its algebraic K-theory has been computed in [38]:

K(Cantora)� S/(a− 1), (3·2)

the mod a− 1 Moore spectrum. In particular, the spectrum K(Cantor2) is contractible. Note
that the definition makes sense for a= 1 as well. In that case, we have an isomorphism
between Cantor1 and the Lawvere theory Z–Sets of permutations, and the equivalence (3·2)
is still true by Example 3·3.

Example 3·8. Lawvere theories can be presented by generators and relations. The ‘gen-
erators’ of a theory are specified in terms of a graded set P= (Pa | a � 0 ), where Pa is a set
of operations of arity a. There is a free Lawvere theory functor P 	→ TP that is left adjoint to
the functor that assigns to a theory the graded set of operations. For instance, let [a] be the
graded set that only has one element, and where the degree of that element is a. Then T[a] is
the free theory generated by one operation of arity a. For instance, the Lawvere theory T[0]

is the theory of pointed sets. The Lawvere theory T[1] is the theory of self-maps (or N–sets):
sets together with a self-map, and T[2] is the theory of magmas: sets equipped with a multi-
plication that does not have to satisfy any axioms. The free T[a]–model on a set X is given
by the set of all trees of arity a with leaves colored in X. This model has a unique basis: the
trees of height 1, and we can argue as in Example 3·6 that K(T[a])� S.

Finally, we mention the two trivial (or inconsistent, in Lawvere’s terminology) exam-
ples of theories where the free model functor is not faithful (see Lawvere’s thesis [16, II·1,
proposition 3]).

Example 3·9. There is a theory such that all models are either empty or singletons. It
has no operations aside from the projections Xn→ X, and the relations require that all these
projections are equal, so that x1 = x2 for all elements xj in a set X that is a model.

Example 3·10. There is a theory such that all models are singletons. It has a 0–ary oper-
ation (constant) e, and the relation x= e has to be satisfied for all x in a model X. Another
way of describing the same Lawvere theory: this is the theory of modules over the trivial
ring, where 0= 1. From this perspective, the theory is not so exotic after all!

For both of these examples, the algebraic K-theory spectra are obviously contractible.
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4. Morita equivalences and invariance for matrix theories

Given a Lawvere theory T and an integer n � 1, the matrix theory Mn(T) is the Lawvere
theory such that the free Mn(T)–model on a set X is the free T–model on the set n× X (see
[44, section 4]). In other words, the category FMn(T) is the full subcategory of the category
FT consisting of the objects Tnr for r � 0.

More diagrammatically, we may view n×− as a strong monoidal endofunctor of FT ,
which takes an object Tr to the n–fold sum of Tr with itself. The underlying category of the
Lawvere theory Mn(T) is the image of n×− and the structure functor that defines Mn(T) as
a Lawvere theory is the composite

E−−→ FT
n×−−−→ FT .

It is easy to describe all Mn(T)–models up to isomorphism: given a T–model X, we can
construct an Mn(T)–model on the n–th cartesian power Xn of X; the r–ary Mn(T)–operations
(Xn)r→ Xn are the maps such that all components (Xn)r→ X are nr–ary T–operations on
X. In particular, we get a unary operation Xn→ Xn for each self-map of the set n, and so the
monoid End(n) acts on the model Xn. Every model arises this way, up to isomorphism. Every
Mn(T)–model of the form Xn has an underlying T–model consisting of the operations that
are themselves n–th powers, which gives a forgetful functor MMn(T)→MT . Equivalently,
there is a morphism

T −→Mn(T) (4·1)

of Lawvere theories. From the diagrammatic perspective, this morphism is simply the above
functor n×− : FT→ FMn(T) ⊂ FT , which by construction is a functor under E and hence a
map of Lawvere theories. We readily observe that there are isomorphisms M1(T)∼= T and
Mm(Mn(T))∼=Mmn(T). If T is the theory of modules over a ring A as in Example 1·2, then
Mn(T) is the theory of modules over the matrix ring Mn(A). The Lawvere theory Mn(E) is
the theory of End(n)–sets.

We now show that the higher algebraic K-theory of a Lawvere theory T is invariant under
passage to matrix theories Mn(T).

THEOREM 4·1. For every Lawvere theory T, there is an equivalence

�∞0 K(Mn(T))��∞0 K(T)

of infinite loop spaces.

Proof. We may use that the existence of isomorphisms Mn(T)r ∼= Tn×r of models implies
that we have isomorphisms

Aut(Mn(T)r)∼=Aut(Tn×r)

between the automorphism groups. Therefore, when we compare the diagrams (2·3), the
one with the groups Aut(Mn(T)r) for Mn(T) naturally embeds as a cofinal subdiagram of the
diagram with the groups Aut(Tr) for T . We only see every n–th term, but the colimits can be
identified, of course, and this proves the statement on the level of spaces.

To see that we have an equivalence of infinite loop spaces, we show that this map is
induced by a map of spectra. However, the equivalence is not induced by the morphism
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K(T)→K(MnT) of spectra that comes from the canonical morphism (4·1) of theories. A
remedy is to leave the world of Lawvere theories for the rest of the proof and use the general
context of symmetric monoidal theories. Then we see that the equivalence does come from
a morphism K(MnT)→K(T) of spectra in the other direction. This morphism of spectra
is obtained from the symmetric monoidal functor FMn(T)→ FT given by the inclusion of
FMn(T) into FT as the image of the functor n×−. This functor is defined by Mn(T)r ∼=
Tn×r 	→ Tn×r and so, while it is essentially the identity on morphisms, it is not necessarily
surjective on objects. In particular, it need not be surjective on the level of components, as
is required for a map of Lawvere theories according to Remark 2·2. On the component of
zero, however, it has the effect described in the first part of the proof, showing that we have
an equivalence of infinite loop spaces.

In fact, as tempting as it might be to hope for an equivalence K(MnT)�K(T) of K-
theory spectra, we cannot have that, in general, because of the difference in the groups K0

of components:

Example 4·2. As explained in [38, remark 5·3] and Example 3·7 of the preceding section,
the Cantor theories Cantora of arity a � 2 have K0(Cantora)=Z/(a− 1) finite. But by con-
struction, the matrix theory Mn(Cantora) only involves the elements represented by multiples
of n in the group Z/(a− 1). Therefore, if n is not coprime to a− 1, then K0(MnCantora) will
be strictly smaller than K0(Cantora). In particular, the morphisms between K(Cantora) and
K(MnCantora) described in Remark 2·2 and Example 4·2 are not equivalences in this case.

Theorem 4·1 might suggest that the higher algebraic K-theory of Lawvere theories is
Morita invariant, but we show in the rest of the paper that this is not the case. We start with
the definition.

Definition 4·3. Two Lawvere theories S and T are called Morita equivalent if their
categories MS and MT of models are equivalent.

For instance, if S is the Lawvere theory of modules over a ring A, then T is also a Lawvere
theory of modules over a ring B, and this ring B is Morita equivalent to A in the usual sense;
see [2, example 3·1]. Thus, Definition 4·3 is in agreement with the established terminol-
ogy for Lawvere theories that are given by rings. In general, it turns out that the Morita
equivalence relation is generated by two processes, one of which we have already seen.

PROPOSITION 4·4 ([8, 20]). A Lawvere theory is Morita equivalent to a given Lawvere
theory T if and only if it is an idempotent modification of a matrix theory of T for some
pseudo-invertible idempotent of the matrix theory.

Since behavior of algebraic K-theory on passage to matrix theories is already fully
described by our results above, we now turn to idempotent modifications.

Let T be a Lawvere theory with an idempotent endomorphism u : T1→ T1 of the free
T–model T1 on one generator. We write un : Tn→ Tn for the n–fold sum, so that u1 = u.
An idempotent u is pseudo-invertible if, for some fixed k, there are morphisms T1→ Tk and
Tk→ T1 such that their composition around uk : Tk→ Tk is the identity on T1.
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LEMMA 4·5. Consider the following properties for a morphism f : Tr→ Ts in FT with
respect to a fixed idempotent u:

(i) f = usgur for some g : Tr→ Ts;

(ii) usf = f = fur;

(iii) usf = fur.

Then (i)⇔ (ii)⇒ (iii). We have (ii)⇐ (iii) if and only if u= id.

We define Fu
T � FT to be the subcategory (!) consisting of the morphisms that satisfy

condition (iii) in Lemma 4·5 above. Note that (i) and (ii) do not define a subcategory in
general, because the identity morphisms satisfy (iii), but not necessarily (i) or (ii). However,
we can define a new category structure on the subsets of FT (Tr, Ts) consisting of morphisms
satisfying conditions (i) and (ii): these subsets are closed under composition, and the ur’s
act as new identities. This gives another category FuTu and another Lawvere theory, the
idempotent modification uTu of T with respect to the idempotent u. There is a functor Fu

T→
FuTu defined by f 	→ uf = ufu= fu, and we can, in principle, compare the new Lawvere
theory uTu to T using the zigzag

FuTu←− Fu
T −→ FT

of functors defined above, all of which are the identities on objects. These functors then
induce a comparison zigzag of K-theory spectra.

However, this zigzag of K-theory spectra is not generally an equivalence. In the follow-
ing section, we provide examples of Lawvere theories that are Morita equivalent but have
different higher algebraic K-theory. This also shows that [43, example IV·4·13(a)], which
suggests that the inclusion of a symmetric monoidal category into its idempotent completion
should always be cofinal, is lacking an additivity assumption.

5. Theories equivalent to the theory of Boolean algebras

In this section, we present new computations: we determine the algebraic K-theory of
the Lawvere theory of Boolean algebras. Our methods allow us to deal more generally with
the Lawvere theories of v–valued Post algebras. Boolean algebras form the case v= 2. The
Lawvere theories of v–valued Post algebras are all Morita equivalent to each other. In fact,
these form the set of all the Lawvere theories that are equivalent to the theory of Boolean
algebras. As a consequence of our computations, we show that algebraic K-theory is not
Morita invariant in general.

Boolean algebras and their relationship to set theory and logic are fundamental for mathe-
matics and well known. Post algebras were introduced by Rosenbloom [30]. They are named
after Post’s work [24] on non-classical logics with v truth values. Later references are Wade
[41], Epstein [10], as well as the surveys by Serfati [34] and Dwinger [9], to which we refer
for defining equations and explicit models of the free algebras. In the following, we will
only recall their definition as a Lawvere theory and what is necessary for our purposes.

We write Map(R, S) for the set of all maps from a set R to a set S. As before, we build
on the specific finite sets r= {a ∈Z | 1 � a � r}. For a fixed integer v � 2, we now consider
the category whose objects are the finite sets of the form Map(r, v), where r ranges over
all integers r � 0, and whose morphisms are all maps between these sets. By construction,
this category has finite products, and every object Map(r, v) is the r–th power of the object
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Map(1, v)= v. Therefore, the opposite category has finite co-products, and every object is a
multiple of one object, the one corresponding to the set Map(1, v). This opposite category
defines the Lawvere theory Postv of v–valued Post algebras. For v= 2, Post’s v–valued logic
specialises to the 2–valued Boolean logic, and we have Post2 =Boole, the Lawvere theory of
Boolean algebras. Using our description above, this is a well-known consequence of Stone
duality: the set of subsets of Map(r, 2) is a free Boolean algebra on r generators, with 22r

elements in total.
Dukarm [8, section 3] notes that the Lawvere theories Postv are all Morita equivalent to

each other. After all, for any given integer v � 2, any finite set is a retract of a set of the
form Map(r, v) for r � 0 large enough. There is no need for us to choose such a retraction.
(The situation is comparable to the abstract existence of isomorphisms Qp

∼=C of fields
between the algebraic closure Qp of the field Qp of p–adic numbers and the field C of
complex numbers, showing that the isomorphism type of Qp is independent of p.) In any
event, it follows from the existence of such retractions that the idempotent completions of the
categories of free v–valued Post algebras are equivalent to the category of non-empty finite
sets, regardless of v. Since these idempotent completions are independent of the integer v, so
is the Morita equivalence class of Postv, by the results recalled in Section 4. The following
theorem shows that, in contrast, higher algebraic K-theory detects the number v of truth
values, and K-theory is therefore not fully Morita invariant.

In order to state the result, we need the spectrum R× of units of a commutative ring spec-
trum R (see [18]). This spectrum is defined so that its underlying infinite loop space �∞R× is
the union of the components of �∞R that represent units, i.e., are invertible, in the ring π0R.
The inclusion �∞R×→�∞R then induces an isomorphism on higher homotopy groups.
The inclusion is not, however, a morphism of infinite loop spaces. Instead, the delooping
R× of �∞R× comes from the E∞ multiplication of R. We need the units for the localisation
R= S[1/v] of the sphere spectrum S away from v and its 0–truncation, the Eilenberg–Mac
Lane spectrum R=HZ[1/v]. The truncation induces a morphism S[1/v]×→HZ[1/v]× of
spectra of units. There is also a homomorphism Z→Z[1/v]× of abelian groups that sends
the generator 1 to the unit v, which induces a map of Eilenberg–Mac Lane spectra.

THEOREM 5·1. For every integer v � 2, there is a homotopy pullback square

K(Postv) S[1/v]×

HZ v HZ[1/v]×

of spectra. In particular, we have

K∗(Postv)∼= π∗(S)/v–power torsion,

where the π∗(S) are the stable homotopy groups of spheres.

We single out the case v= 2 for emphasis:

COROLLARY 5·2. We have

K∗(Boole)∼= π∗(S)/2–power torsion

for the algebraic K-theory of the Lawvere theory of Boolean algebras.
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While Boolean algebras form a comparatively well-known algebraic structure, the v–
valued Post algebras are certainly non-standard, and it might come as a surprise that we
can prove such results without even revealing their defining operations, let alone the axioms
that these operations are required to satisfy. However, as we hope the following proof makes
clear, the ability to do so is precisely one of the benefits of our categorical methods.

Proof of Theorem 5·1. By definition, the category of free v–valued Post algebras is equiv-
alent to the opposite of the full subcategory of the category of sets spanned by those sets
of the form Map(r, v). Since these have different cardinalities for different values of r, the
isomorphism type of the free v–valued Post algebra of rank r determines the rank r. Passing
to group completion, we get K0(Postv)∼=Z∼= π0(S), as claimed.

For the higher algebraic K-theory, we turn toward the automorphism groups. If X is an
object in a category C, we have

AutCop(X)∼=AutC(X)op ∼=AutC(X).

Applied to our situation, this shows that the automorphism group of the free v–valued
Post algebra of rank r is isomorphic to the group of permutations of the set Map(r, v) of
cardinality vr, and therefore to the symmetric group �(vr) acting on a set of vr elements.

Stabilisation leads us to the colimit of the diagram

�(1)−→�(v)−→�(v2)−→ · · · −→�(vr)−→ · · · , (5·1)

where the morphisms are given by multiplication with v: a permutation σ of vr is sent to the
permutation σ × idv of vr × v= vr+1, which looks just like v copies of the permutation σ

acting on v disjoint copies of vr. In other words, the permutation σ × idv is a block sum of v
copies of σ .

The diagram (5·1) has been studied before by McDuff–Segal [19, example (iv)], and the
following identification of its colimit does not come with any claim on originality.

Picking up our notation from Example 3·2, we have maps B�(d)→Q(d) that fit together
to form a commutative diagram as follows.

BΣ(1)
×v

BΣ(v)
×v

BΣ(v2)
×v · · ·

Q(1) ×v
Q(v) ×v

Q(v2) ×v
· · ·

This diagram can be used to compute the group completion of the upper colimit, which is
the infinite loop space �∞0 K(Postv) by Theorem 2·6. This time, in contrast to Example 3·2,
the maps in the lower row are not equivalences, but multiplication by v in the infinite loop
space structure on the Q(vr)�Q(∞)�Q(0). In other words, there is a homology isomor-
phism from the colimit B�(v∞) to the localisation Q(0)[1/v] away from v. This homology
isomorphism gives, after group completion, an equivalence �∞0 K(Postv)��∞0 S[1/v]× of
infinite loop spaces. Noting that the stable homotopy groups of the sphere spectrum in pos-
itive degrees are finite, and A[1/v]= A/(v–power torsion) for finite abelian groups A, we
obtain the identification of the higher homotopy groups in the statement of the theorem.
In other words, we have a morphism K(Postv)→ S[1/v]× of spectra that induces an iso-
morphism on stable homotopy groups in positive degrees. To complete the identification
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of the spectrum K(Postv), we need to describe what it does on components. However, the
description above shows that 1 ∈Z∼= π0K(Postv) is sent to v ∈Z[1/v]× ∼= π0S[1/v]×, and
this observation translates immediately into the homotopy pullback diagram in the statement
of the theorem.

We end this section with an observation which indicates that the relationship between
the K-theories of the Lawvere theory E of sets and of Boolean algebras, or more generally
v–valued Post algebras, is not as simple as Theorem 5·1 might suggest.

PROPOSITION 5·3. For each prime p, the homomorphism

πn(S)∼=Kn(E)−→Kn(Postp)∼= πn(S)/p−power torsion,

induced by the universal arrow E→ Postp of Lawvere theories, is not surjective. In
particular, it is not the canonical surjection.

Proof. Every Boolean algebra has a natural structure of an F2–vector space. The addi-
tion is given by the symmetric difference x+ y= (x∨ y)∧¬(x∧ y)= (x∧¬y)∨ (¬x∧ y).
In fact, the category of Boolean algebras is isomorphic to the category of Boolean rings,
which are commutative rings where every element is idempotent. If 2 is idempotent, we
have 4= 22 = 2, so that 2= 0, and the underlying abelian group is 2–torsion. More gener-
ally, if p is a prime number, every p–Post algebra admits a natural structure of an Fp–algebra
in which every element x satisfies xp = x (see [41] or [34]).

It follows that the canonical morphism S�K(E)→K(Postp) of algebraic K-theory
spectra factors through the algebraic K-theory K(Fp) of the field Fp

S�K(E)−→K(Fp)−→K(Postp).

On the level of automorphism groups, these morphisms correspond to embeddings

�(r)−→GLr(Fp)−→�(pr)

of groups with images given by the subgroups of Fp–linear bijections and the subgroup of
that given by the permutation matrices.

Quillen [27, theorem 8(i)] has shown that K2j−1(Fq)∼=Z/(qj − 1) for all j � 1 and for all
prime powers q. It follows that the p–torsion of the higher algebraic K-groups Kn(Fp) of Fp

is trivial. On the other hand, his computations [28] showed that most of the stable homotopy
of the spheres is contained in the kernel of the canonical morphisms S→K(Z)→K(Fp) of
spectra: what is detected in the algebraic K-theory of finite fields is essentially the image of
Whitehead’s J-homomorphism. In particular, the kernel contains much more than just the
p–power torsion.

Remark 5·4. Morava, in his 2008 Vanderbilt talk [21], highlighted “the apparent fact
that the spectrum defined by the symmetric monoidal category of finite pointed sets under
Cartesian product has not been systematically studied.” This spectrum can be modeled as
the algebraic K-theory of a many-sorted Lawvere theory, where the sorts correspond to the
prime numbers. It is not worth the effort to develop our theory in more generality just to
cover that one example. Instead, we have contented ourselves with demonstrating how the
theory we have developed so far suffices for us to deal with the local factors corresponding
to each prime.
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