Conventional nonvolatile memories such as Flash and EEPROM memory have successfully evolved toward high density and low cost. Especially, the market and density of flash memories has grown rapidly which leads semiconductor technology. However, there have been concerns about whether this successful progress can be maintained in the future nano era and can satisfy the requirement of diversified future IT market. Flash memories have the advantage of high density with small cell size and by contraries the disadvantage of slow writing speed and limited endurance. This slow writing speed and limited endurance is not aligned with the trend of high speed and reliability for future semiconductor memories.
The future for these conventional nonvolatile memories forces many research groups and companies to develop alternative memories with ideal memory characteristics such as non-volatility, high density, high speed, and low power, which none of the conventional memories can satisfy at the same time.
In this article, I will evaluate the characteristics of future nonvolatile memories such as ferroelectric random access memory (FRAM), magnetoresistive random access memory (MRAM) and phase change random access memory (PRAM). These memories have been recently evaluated because of the possibility that they can overcome the challenges that conventional memories are facing. Finally we will review critical technology barriers in developing future memory and predict the promising technology to overcome the barriers in conventional and emerging new memories, which will be technology guidelines for future memory development.