A path decomposition of a digraph G (having no loops or multiple arcs) is a family of simple paths such that every arc of G lies on precisely one of the paths of the family. The path number, pn(G) is the minimal number of paths necessary to form a path decomposition of G.
We show that pn(G) ≥ max{0, od(v)-id(v)} the sum taken over all vertices v of G, with equality holding if G is acyclic. If G is a subgraph of a tournament on n vertices we show that pn(G) ≤ with equality holding if G is transitive.
We conjecture that pn(G) ≤ for any digraph G on n vertices if n is sufficiently large, perhaps for all n ≥ 4.