Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T05:16:41.390Z Has data issue: false hasContentIssue false

Padé approximation and orthogonal polynomials

Published online by Cambridge University Press:  17 April 2009

G.D. Allen
Affiliation:
Department of Mathematics, Texas A&M University, College of Science, Texas, USA.
C.K. Chui
Affiliation:
Department of Mathematics, Texas A&M University, College of Science, Texas, USA.
W.R. Madych
Affiliation:
Department of Mathematics, Texas A&M University, College of Science, Texas, USA.
F.J. Narcowich
Affiliation:
Department of Mathematics, Texas A&M University, College of Science, Texas, USA.
P.W. Smith
Affiliation:
Department of Mathematics, Texas A&M University, College of Science, Texas, USA.
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By using a variational method, we study the structure of the Padé table for a formal power series. For series of Stieltjes, this method is employed to study the relations of the Padé approximants with orthogonal polynomials and gaussian quadrature formulas. Hence, we can study convergence, precise locations of poles and zeros, monotonicity, and so on, of these approximants. Our methods have nothing to do with determinant theory and the theory of continued fractions which were used extensively in the past.

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1974

References

[1]Akhiezer, N.I., The classical moment problem and some related questions in analysis (translated by Kemmer, N.. Hafner, New York; Oliver & Boyd, Edinburgh and London, 1965).Google Scholar
[2]Baker, George A. Jr, “The theory and application of the Pade approximant method”, Adv. Theor. Phys. 1 (1965), 158.Google Scholar
[3]Baker, George A. Jr and Gammel, John L. (editors), The Padé approximant in theoretical physics (Mathematics in Science and Engineering, 71. Academic Press, New York and London, 1970).Google Scholar
[4]Boullion, Thomas L., Odell, Patrick L., Generalized inverse matrices (Wiley-Interscience, New York, London, Sydney, Toronto, 1971).Google Scholar
[5]Frobenius, G., “Ueber Relationen zwischen den Näherungsbrüchen von Potenzreihen”, J. reine angew. Math. 90 (1881), 117. (See also: Ferdinand Georg Frobenius, Gesammelte Abhandlungen, Band II, 47–63 (Springer-Verlag, Berlin, Heidelberg, New York, 1968).)CrossRefGoogle Scholar
[6]Hamburger, Hans, “Beiträge zur Konvergenztheorie der Stieltjesschen Kettenbrüche”, Math. Z. 4 (1919), 186222.CrossRefGoogle Scholar
[7]Hamburger, Hans, “Über eine Erweiterung des Stieltjesschen Momenten-problems. I”, Math. Ann. 81 (1920), 235319.CrossRefGoogle Scholar
[]Hamburger, Hans, “Über eine Erweiterung des Stieltjesschen Momenten-problems. II, III”, Math. Ann. 82 (1921), 120164, 168–187.CrossRefGoogle Scholar
[9]Heine, E., Hanđbuch der Kugelfunctionen: Erster Band, Theorie der Kugelfunctionen und der verwandten Functionen; Zweiter Band, Anwendungen der Kugelfunctionen und der verwandten Functionen (zweite umbearbeitete und vermehrte Auflage. G. Reimer, Berlin, 1878, 1881).Google Scholar
[1O]Markoff, A.A., Differenzenrechnung (B.G. Teubner, Leipzig, 1896).Google Scholar
[11]Nuttall, J., “The connection of Padé approximants with stationary variational principles and the convergence of certain Padé approximants”, The Padé approximant in theoretical physics, 219230 (Mathematics in Science and Engineering, 71. Academic Press, New York and London, 1970); see [3].CrossRefGoogle Scholar
[12]Padé, H., “Sur la représentation approchée d'une fonction par der fractions rationelles”, Thèse, Ann. de l'École Norm. (3) 9 (1892), Suppl. 393.CrossRefGoogle Scholar
[13]Riesz, M., “Sur le problème des moments. I, II”, Ark. f. Mat., Astron. Fys. 16 (1922): Nr. 12, 23 pp; Nr. 19, 21 pp.Google Scholar
[14]Riesz, M., “Sur le problème des moments, III”, Ark. f. Mat., Astron. Fys. 17 (1923), Nr. 16.Google Scholar
[15]Stieltjes, T.-J., “Recherches sur les fractions continues”, Ann. Fac. Sci., Toulouse 8 (1894), 1122.Google Scholar
[16]Stieltjes, T.-J., “Recherches sur les fractions continues”, Ann. Fac. Sci., Toulouse 9 (1895), 147.Google Scholar
[17]Szegö, Gabor, Orthogonal polynomials (Amer. Math. Soc. Colloquium Publications, 23. Amer. Math. Soc., New York City, 1939; revised edition, 1959).Google Scholar
[18]Tchebyshev, P.L., Oeuvres. Tomes I, II (Commissionaires Acad. Impér. Sci., St Petersburg, 1899–1907; reprinted Chelsea Publishing Co., New York, 1962).Google Scholar
[19]Wall, H.S., Analytic theory of continued fractions (Van Nostrand, New York, Toronto, London, 1948).Google Scholar