We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Answering a question by Chatterji–Druţu–Haglund, we prove that, for every locally compact group $G$, there exists a critical constant $p_G \in [0,\infty ]$ such that $G$ admits a continuous affine isometric action on an $L_p$ space ($0< p<\infty$) with unbounded orbits if and only if $p \geq p_G$. A similar result holds for the existence of proper continuous affine isometric actions on $L_p$ spaces. Using a representation of cohomology by harmonic cocycles, we also show that such unbounded orbits cannot occur when the linear part comes from a measure-preserving action, or more generally a state-preserving action on a von Neumann algebra and $p>2$. We also prove the stability of this critical constant $p_G$ under $L_p$ measure equivalence, answering a question of Fisher.
This chapter, interesting on its own, is devoted to presenting some account of the classical theory of elliptic functions. Almost no dynamics is involved here. We follow classical book expositions. We will actually not need this chapter anywhere else in the book except in one chapter where we provide a lot of examples of elliptic functions, mainly Weierstrass $\wp$ functions, but not only them.
In Chapter 4, Lattice-Based Integer Factorisation: An Introduction to Coppersmith’s Method, Alexander May investigates the use of LLL to factor integers as pioneered by Coppersmith. Conceptually, Coppersmith’s method can be deceptively simple: given additional information about an integer to factor (e.g., the knowledge that an RSA key pair (N; e) has a small corresponding private exponent d), derive a system of equations with a small root that reveals the factorization and use LLL to find the small root. As a result, it becomes possible to explore exponentially sized search spaces, while preserving polynomial time by using the famous LLL lattice reduction algorithm. Yet, exploiting Coppersmith’s method in a cryptographic context optimally often involves a number of clever choices related to which system of equations to consider. At first, this is a tantalisingly annoying problem where the choice may appear obvious only in retrospect. May uses his extensive experience in improving the state of the art to explain the reasoning behind various applications in Chapter 4.
Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper, we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and study the Cartan invariant for measurable
$\mathrm{PU}(m,1)$
-cocycles of complex hyperbolic lattices.
The topic of this course is the discrete subgroups of semisimple Lie groups. We discuss a criterion that ensures that such a subgroup is arithmetic. This criterion is a joint work with Sébastien Miquel, which extends previous work of Selberg and Hee Oh and solves an old conjecture of Margulis. We focus on concrete examples like the group
$\mathrm {SL}(d,{\mathbb {R}})$
and we explain how classical tools and new techniques enter the proof: the Auslander projection theorem, the Bruhat decomposition, the Mahler compactness criterion, the Borel density theorem, the Borel–Harish-Chandra finiteness theorem, the Howe–Moore mixing theorem, the Dani–Margulis recurrence theorem, the Raghunathan–Venkataramana finite-index subgroup theorem and so on.
In 1945–1946, C. L. Siegel proved that an $n$-dimensional lattice $\unicode[STIX]{x1D6EC}$ of determinant $\text{det}(\unicode[STIX]{x1D6EC})$ has at most $m^{n^{2}}$ different sublattices of determinant $m\cdot \text{det}(\unicode[STIX]{x1D6EC})$. In 1997, the exact number of the different sublattices of index $m$ was determined by Baake. We present a systematic treatment for counting the sublattices and derive a formula for the number of the sublattice classes under unimodular equivalence.
We consider a deformation $E_{L,\unicode[STIX]{x1D6EC}}^{(m)}(it)$ of the Dedekind eta function depending on two $d$-dimensional simple lattices $(L,\unicode[STIX]{x1D6EC})$ and two parameters $(m,t)\in (0,\infty )$, initially proposed by Terry Gannon. We show that the minimisers of the lattice theta function are the maximisers of $E_{L,\unicode[STIX]{x1D6EC}}^{(m)}(it)$ in the space of lattices with fixed density. The proof is based on the study of a lattice generalisation of the logarithm, called the lattice logarithm, also defined by Terry Gannon. We also prove that the natural logarithm is characterised by a variational problem over a class of one-dimensional lattice logarithms.
We introduce coset progressions and Bohr sets, and show that the two notions are roughly equivalent up to Freiman homomorphism. To facilitate the proof of this we introduce lattices and convex bodies and their basic properties, and prove Minkowski’s second theorem from the geometry of numbers.
Let $\unicode[STIX]{x1D6E4}\leqslant \text{Aut}(T_{d_{1}})\times \text{Aut}(T_{d_{2}})$ be a group acting freely and transitively on the product of two regular trees of degree $d_{1}$ and $d_{2}$. We develop an algorithm that computes the closure of the projection of $\unicode[STIX]{x1D6E4}$ on $\text{Aut}(T_{d_{t}})$ under the hypothesis that $d_{t}\geqslant 6$ is even and that the local action of $\unicode[STIX]{x1D6E4}$ on $T_{d_{t}}$ contains $\text{Alt}(d_{t})$. We show that if $\unicode[STIX]{x1D6E4}$ is torsion-free and $d_{1}=d_{2}=6$, exactly seven closed subgroups of $\text{Aut}(T_{6})$ arise in this way. We also construct two new infinite families of virtually simple lattices in $\text{Aut}(T_{6})\times \text{Aut}(T_{4n})$ and in $\text{Aut}(T_{2n})\times \text{Aut}(T_{2n+1})$, respectively, for all $n\geqslant 2$. In particular, we provide an explicit presentation of a torsion-free infinite simple group on 5 generators and 10 relations, that splits as an amalgamated free product of two copies of $F_{3}$ over $F_{11}$. We include information arising from computer-assisted exhaustive searches of lattices in products of trees of small degrees. In an appendix by Pierre-Emmanuel Caprace, some of our results are used to show that abstract and relative commensurator groups of free groups are almost simple, providing partial answers to questions of Lubotzky and Lubotzky–Mozes–Zimmer.
This paper concerns HH-relations in the lattices P(M) of all projections of W*-algebras M. If M is a finite algebra, all these relations are generated by trails in P(M). If M is an infinite countably decomposable factor, they are either generated by trails or associated with them.
These notes on semihyperbolicity in group theory are based on a series of lectures given at the meeting Beyond Hyperbolicity at Cambridge in June 2016.
This paper provides some evidence for conjectural relations between extensions of (right) weak order on Coxeter groups, closure operators on root systems, and Bruhat order. The conjecture focused upon here refines an earlier question as to whether the set of initial sections of reflection orders, ordered by inclusion, forms a complete lattice. Meet and join in weak order are described in terms of a suitable closure operator. Galois connections are defined from the power set of $W$ to itself, under which maximal subgroups of certain groupoids correspond to certain complete meet subsemilattices of weak order. An analogue of weak order for standard parabolic subsets of any rank of the root system is defined, reducing to the usual weak order in rank zero, and having some analogous properties in rank one (and conjecturally in general).
Let $Y$ be a complex Enriques surface whose universal cover $X$ is birational to a general quartic Hessian surface. Using the result on the automorphism group of $X$ due to Dolgachev and Keum, we obtain a finite presentation of the automorphism group of $Y$. The list of elliptic fibrations on $Y$ and the list of combinations of rational double points that can appear on a surface birational to $Y$ are presented. As an application, a set of generators of the automorphism group of the generic Enriques surface is calculated explicitly.
We consider three special and significant cases of the following problem. Let $D\subset \mathbb{R}^{d}$ be a (possibly unbounded) set of finite Lebesgue measure. Let $E(\mathbb{Z}^{d})=\{e^{2\unicode[STIX]{x1D70B}ix\cdot n}\}\text{}_{n\in \mathbb{Z}^{d}}$ be the standard exponential basis on the unit cube of $\mathbb{R}^{d}$. Find conditions on $D$ for which $E(\mathbb{Z}^{d})$ is a frame, a Riesz sequence, or a Riesz basis for $L^{2}(D)$.
We show that closed $\mathbb{S}\text{ol}^{3}\times \mathbb{E}^{1}$-manifolds are Seifert fibred, with general fibre the torus, and base one of the flat 2-orbifolds $T,Kb,\mathbb{A},\mathbb{M}b,S(2,2,2,2),P(2,2)$ or $\mathbb{D}(2,2)$, and outline how such manifolds may be classified.
Let $\unicode[STIX]{x1D70E}=\{\unicode[STIX]{x1D70E}_{i}\mid i\in I\}$ be a partition of the set of all primes $\mathbb{P}$. Let $\unicode[STIX]{x1D70E}_{0}\in \unicode[STIX]{x1D6F1}\subseteq \unicode[STIX]{x1D70E}$ and let $\mathfrak{I}$ be a class of finite $\unicode[STIX]{x1D70E}_{0}$-groups which is closed under extensions, epimorphic images and subgroups. We say that a finite group $G$ is $\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-primary provided $G$ is either an $\mathfrak{I}$-group or a $\unicode[STIX]{x1D70E}_{i}$-group for some $\unicode[STIX]{x1D70E}_{i}\in \unicode[STIX]{x1D6F1}\setminus \{\unicode[STIX]{x1D70E}_{0}\}$ and we say that a subgroup $A$ of an arbitrary group $G^{\ast }$ is $\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-subnormal in $G^{\ast }$ if there is a subgroup chain $A=A_{0}\leq A_{1}\leq \cdots \leq A_{t}=G^{\ast }$ such that either $A_{i-1}\unlhd A_{i}$ or $A_{i}/(A_{i-1})_{A_{i}}$ is $\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-primary for all $i=1,\ldots ,t$. We prove that the set ${\mathcal{L}}_{\unicode[STIX]{x1D6F1}_{\mathfrak{I}}}(G)$ of all $\unicode[STIX]{x1D6F1}_{\mathfrak{I}}$-subnormal subgroups of $G$ forms a sublattice of the lattice of all subgroups of $G$ and we describe the conditions under which the lattice ${\mathcal{L}}_{\unicode[STIX]{x1D6F1}_{\mathfrak{I}}}(G)$ is modular.
We describe methods for measuring crystal orientation fabric with sonic waves in an ice core borehole, with special attention paid to vertical-girdle fabrics that are prevalent at the WAIS Divide. The speed of vertically propagating compressional waves in ice is influenced by vertical clustering of the ice crystal c-axes. Shear-wave speeds – particularly the speed separation between fast and slow shear polarizations – are sensitive to azimuthal anisotropy. Sonic data from the WAIS Divide complement thin-section measurements of fabric. Thin sections show a steady transition to strong girdle fabrics in the upper 2000 m of ice, followed by a transition to vertical-pole fabrics below 2500 m depth. Compressional-wave sonic data are inconclusive in the upper ice, due to noise, as well as the method's inherent insensitivity to girdle fabrics. Compared with available thin sections, sonic data provide better resolution of the transition to pole fabrics below 2500 m, notably including an abrupt increase in vertical clustering near 3000 m. Our compressional-wave measurements resolve fabric changes occurring over depth ranges of a few meters that cannot be inferred from available thin sections, but are sensitive only to zenithal anisotropy. Future logging tools should be designed to measure shear waves in addition to compressional waves, especially for logging in regions where ice flow patterns favor the development of girdle fabrics.
Tabling is a powerful resolution mechanism for logic programs that captures their least fixed point semantics more faithfully than plain Prolog. In many tabling applications, we are not interested in the set of all answers to a goal, but only require an aggregation of those answers. Several works have studied efficient techniques, such as lattice-based answer subsumption and mode-directed tabling, to do so for various forms of aggregation.
While much attention has been paid to expressivity and efficient implementation of the different approaches, soundness has not been considered. This paper shows that the different implementations indeed fail to produce least fixed points for some programs. As a remedy, we provide a formal framework that generalises the existing approaches and we establish a soundness criterion that explains for which programs the approach is sound.
We generate an algebra on blood phenotypes with multiplication based on the human ABO-blood group inheritance pattern. We assume that gametes are not chosen randomly during meiosis. We investigate some of the properties of this algebra, namely, the set of idempotents, lattice of ideals and the associative enveloping algebra.