Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T02:30:43.906Z Has data issue: false hasContentIssue false

New Simple Lattices in Products of Trees and their Projections

Published online by Cambridge University Press:  07 October 2019

Nicolas Radu*
Affiliation:
UCLouvain, 1348 Louvain-la-Neuve, Belgium Email: [email protected]@uclouvain.be

Abstract

Let $\unicode[STIX]{x1D6E4}\leqslant \text{Aut}(T_{d_{1}})\times \text{Aut}(T_{d_{2}})$ be a group acting freely and transitively on the product of two regular trees of degree $d_{1}$ and $d_{2}$. We develop an algorithm that computes the closure of the projection of $\unicode[STIX]{x1D6E4}$ on $\text{Aut}(T_{d_{t}})$ under the hypothesis that $d_{t}\geqslant 6$ is even and that the local action of $\unicode[STIX]{x1D6E4}$ on $T_{d_{t}}$ contains $\text{Alt}(d_{t})$. We show that if $\unicode[STIX]{x1D6E4}$ is torsion-free and $d_{1}=d_{2}=6$, exactly seven closed subgroups of $\text{Aut}(T_{6})$ arise in this way. We also construct two new infinite families of virtually simple lattices in $\text{Aut}(T_{6})\times \text{Aut}(T_{4n})$ and in $\text{Aut}(T_{2n})\times \text{Aut}(T_{2n+1})$, respectively, for all $n\geqslant 2$. In particular, we provide an explicit presentation of a torsion-free infinite simple group on 5 generators and 10 relations, that splits as an amalgamated free product of two copies of $F_{3}$ over $F_{11}$. We include information arising from computer-assisted exhaustive searches of lattices in products of trees of small degrees. In an appendix by Pierre-Emmanuel Caprace, some of our results are used to show that abstract and relative commensurator groups of free groups are almost simple, providing partial answers to questions of Lubotzky and Lubotzky–Mozes–Zimmer.

Type
Article
Copyright
© Canadian Mathematical Society 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

N. Radu is an F.R.S.-FNRS research fellow. P.-E. Caprace is an F.R.S.-FNRS senior research associate.

References

Bader, U. and Shalom, Y., Factor and normal subgroup theorems for lattices in products of groups. Invent. Math. 163(2006), 415454. https://doi.org/10.1007/s00222-005-0469-5CrossRefGoogle Scholar
Bartholdi, L. and Bogopolski, O., On abstract commensurators of groups. J. Group Theory 13(2010), no. 6, 903922. https://doi.org/10.1515/JGT.2010.021Google Scholar
Bass, H. and Kulkarni, R., Uniform tree lattices. J. Amer. Math. Soc. 3(1990), no. 4, 843902. https://doi.org/10.2307/1990905CrossRefGoogle Scholar
Bass, H. and Lubotzky, A., Tree lattices. Progr. Math., 176, Birkhäuser Boston, Inc., Boston, 2001. https://doi.org/10.1007/978-1-4612-2098-5CrossRefGoogle Scholar
Bondarenko, I. and Kivva, B., Automaton groups and complete square complexes. arxiv:1707.00215Google Scholar
Burger, M. and Mozes, S., Groups acting on trees: from local to global structure. Inst. Hautes Études Sci. Publ. Math. 92(2000), 113150.CrossRefGoogle Scholar
Burger, M. and Mozes, S., Lattices in products of trees. Inst. Hautes Études Sci. Publ. Math. 92(2000), 151194.CrossRefGoogle Scholar
Burger, M., Mozes, S., and Zimmer, R. J., Linear representations and arithmeticity of lattices in products of trees. In: Essays in geometric group theory, Ramanujan Math. Soc. Lect. Notes Ser., vol. 9, Ramanujan Math. Soc., Mysore, 2009, pp. 125.Google Scholar
Caprace, P.-E., Amenable groups and Hadamard spaces with a totally disconnected isometry group. Comment. Math. Helv. 84(2009), no. 2, 437455. https://doi.org/10.4171/CMH/168CrossRefGoogle Scholar
Caprace, P.-E., Finite and infinite quotients of discrete and indiscrete groups. arxiv:1709.05949Google Scholar
Caprace, P.-E. and Monod, N., Isometry groups of non-positively curved spaces: discrete subgroups. J. Topol. 2(2009), no. 4, 701746. https://doi.org/10.1112/jtopol/jtp027CrossRefGoogle Scholar
Caprace, P.-E., Reid, C. D., and Willis, G. A., Locally normal subgroups of totally disconnected groups. Part II: Compactly generated simple groups. Forum Math. Sigma 5(2017), e12.Google Scholar
Caprace, P.-E. and Wesolek, P., Indicability, residual finiteness, and simple subquotients of groups acting on trees. Geom. Topol. 22(2018), no. 7, 41634204. https://doi.org/10.2140/gt.2018.22.4163CrossRefGoogle Scholar
Chamanara, R. and Šarić, D., Elementary moves and the modular group of the compact solenoid. Conformal dynamics and hyperbolic geometry, Contemp. Math., 573, Amer. Math. Soc., Providence, RI, 2012, pp. 1133. https://doi.org/10.1090/conm/573/11395Google Scholar
Creutz, D. and Shalom, Y., A normal subgroup theorem for commensurators of lattices. Groups Geom. Dyn. 8(2014), no. 3, 789810. https://doi.org/10.4171/GGD/248CrossRefGoogle Scholar
Gelander, T., Karlsson, A., and Margulis, G. A., Superrigidity, generalized harmonic maps and uniformly convex spaces. Geom. Funct. Anal. 17(2008), no. 5, 15241550. https://doi.org/10.1007/s00039-007-0639-2CrossRefGoogle Scholar
Jacobson, N., Basic algebra. II. Second ed., W. H. Freeman and Company, New York, 1989.Google Scholar
Janzen, D. and Wise, D. T., A smallest irreducible lattice in the product of trees. Algebr. Geom. Topol. 9(2009), no. 4, 21912201. https://doi.org/10.2140/agt.2009.9.2191CrossRefGoogle Scholar
Kimberly, J. S. and Robertson, G., Groups acting on products of trees, tiling systems and analytic K-theory. New York J. Math. 8(2002), 111131.Google Scholar
Liu, Y.-S., Density of the commensurability groups of uniform tree lattices. J. Algebra 165(1994), no. 2, 346359. https://doi.org/10.1006/jabr.1994.1115CrossRefGoogle Scholar
Lubotzky, A., Mozes, S., and Zimmer, R. J., Superrigidity for the commensurability group of tree lattices. Comment. Math. Helv. 69(1994), no. 4, 523548. https://doi.org/10.1007/BF02564503CrossRefGoogle Scholar
Margulis, G. A., Multiplicative groups of a quaternion algebra over a global field. Dokl. Akad. Nauk SSSR 252(1980), no. 3, 542546.Google Scholar
Margulis, G. A., Discrete subgroups of semisimple Lie groups. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 17, Springer-Verlag, Berlin, 1991. https://doi.org/10.1007/978-3-642-51445-6CrossRefGoogle Scholar
Menegazzo, F. and Tomkinson, M. J., Groups with trivial virtual automorphism group. Israel J. Math. 71(1990), no. 3, 297308. https://doi.org/10.1007/BF02773748CrossRefGoogle Scholar
Monod, N., Superrigidity for irreducible lattices and geometric splitting. J. Amer. Math. Soc. 19(2006), no. 4, 781814. https://doi.org/10.1090/S0894-0347-06-00525-XCrossRefGoogle Scholar
Neumann, P. M., The SQ-universality of some finitely presented groups. J. Austral. Math. Soc. 16(1973), no. 1, 16.Google Scholar
Radu, N., A classification theorem for boundary 2-transitive automorphism groups of trees. Invent. Math. 209(2017), no. 1, 160. https://doi.org/10.1007/s00222-016-0704-2CrossRefGoogle Scholar
Rattaggi, D., Computations in groups acting on a product of trees: normal subgroup structures and quaternion lattices. Ph.D. thesis, ETH Zürich, 2004.Google Scholar
Serre, J.-P., Arbres, amalgames, SL2. Astérisque, 46, Société Mathématique de France, Paris, 1977.Google Scholar
Shalom, Y. and Willis, G. A., Commensurated subgroups of arithmetic groups, totally disconnected groups and adelic rigidity. Geom. Funct. Anal. 23(2013), no. 5, 16311683. https://doi.org/10.1007/s00039-013-0236-5CrossRefGoogle Scholar
Takeuchi, K., Arithmetic triangle groups. J. Math. Soc. Japan 29(1977), 91106. https://doi.org/10.2969/jmsj/02910091CrossRefGoogle Scholar
Takeuchi, K., Commensurability classes of arithmetic triangle groups. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(1977), 201212.Google Scholar
Tits, J., Sur le groupe des automorphismes d’un arbre. In: Essays on topology and related topics (Mémoires dédiés à Georges de Rham). Springer, New York, 1970, pp. 188211.CrossRefGoogle Scholar
Trofimov, V. I., Vertex stabilizers of graphs and tracks. I. European J. Combin. 28(2007), no. 2, 613640. https://doi.org/10.1016/j.ejc.2005.05.010CrossRefGoogle Scholar
Vignéras, M.-F., Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, 800, Springer, Berlin, 1980.CrossRefGoogle Scholar
Weiss, R. M., Groups with a (B, N)-pair and locally transitive graphs. Nagoya Math. J. 74(1979), 121.CrossRefGoogle Scholar