We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A variety is finitely universal if its lattice of subvarieties contains an isomorphic copy of every finite lattice. We show that the 6-element Brandt monoid generates a finitely universal variety of monoids and, by the previous results, it is the smallest generator for a monoid variety with this property. It is also deduced that the join of two Cross varieties of monoids can be finitely universal. In particular, we exhibit a finitely universal variety of monoids with uncountably many subvarieties which is the join of two Cross varieties of monoids whose lattices of subvarieties are the 6-element and the 7-element chains, respectively.
For every pseudovariety
$\mathbf {V}$
of finite monoids, let
$\mathbf {LV}$
denote the pseudovariety of all finite semigroups all of whose local submonoids belong to
$\mathbf {V}$
. In this paper, it is shown that, for every nontrivial semidirectly closed pseudovariety
$\mathbf {V}$
of finite monoids, the pseudovariety
$\mathbf {LV}$
of finite semigroups is also semidirectly closed if, and only if, the given pseudovariety
$\mathbf {V}$
is local in the sense of Tilson. This finding resolves a long-standing open problem posed in the second volume of the classic monograph by Eilenberg.
It is shown that, for every prime number p, the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gp of all finite p-groups has the cardinality of the continuum. Furthermore, it is shown, in addition, that the complete lattice of all semidirectly closed pseudovarieties of finite monoids whose intersection with the pseudovariety G of all finite groups is equal to the pseudovariety Gsol of all finite solvable groups has also the cardinality of the continuum.
This paper provides short proofs of two fundamental theorems of finite semigroup theory whose previous proofs were significantly longer, namely the two-sided Krohn-Rhodes decomposition theorem and Henckell’s aperiodic pointlike theorem. We use a new algebraic technique that we call the merge decomposition. A prototypical application of this technique decomposes a semigroup $T$ into a two-sided semidirect product whose components are built from two subsemigroups $T_{1}$, $T_{2}$, which together generate $T$, and the subsemigroup generated by their setwise product $T_{1}T_{2}$. In this sense we decompose $T$ by merging the subsemigroups $T_{1}$ and $T_{2}$. More generally, our technique merges semigroup homomorphisms from free semigroups.
For each k ≥ 2, we determine the asymptotic behaviour of the sequence of cardinalities of finitely generated free objects in , the variety consisting of all k-testable semigroups.
Kublanovsky has shown that if a subvariety V of the variety RSn generated by completely 0-simple semigroups over groups of exponent n is itself generated by completely 0-simple semigroups, then it must satisfy one of three conditions: (i) A2 ∈ V; (ii) (iii) B2∈V but The conditions (i) and (ii) are also sufficient conditions. In this note, we complete Kublanovsky’s programme by refining condition (iii) to obtain a complete set of conditions that are both necessary and sufficient.
In this paper we introduce the notion of normally ordered block-group as a natural extension of the notion of normally ordered inverse semigroup considered previously by the author. We prove that the class NOS of all normally ordered block-groups forms a pseudovariety of semigroups and, by using the Munn representation of a block-group, we deduce the decompositions in Mal'cev products NOS = EIPOI and NOS ∩ A = NPOI, where A, EI and N denote the pseudovarieties of all aperiodic semigroups, all semigroups with just one idempotent and all nilpotent semigroups, respectively, and POI denotes the pseudovariety of semigroups generated by all semigroups of injective order-preserving partial transformations on a finite chain. These relations are obtained after showing the equalities BG = EIEcom = NEcom, where BG and Ecom denote the pseudovarieties of all block-groups and all semigroups with commuting idempotents, respectively.
To any given balanced semigroup identity U ≈ W a number of polyhedral convex cones are associated. In this setting an algorithm is proposed which determines whether the given identity is satisfied in the bicylic semigroup or in the semigroup . The semigroups BC and E deserve our attention because a semigroup variety contains a simple semigroup which is not completely simple (respectively, which is idempotent free) if and only if this variety contains BC (respectively, E). Therefore, for a given identity U ≈ W it is decidable whether or not the variety determined by U ≈ W contains a simple semigroup which is not completely simple (respectively, which is idempotent free).
A generalization of the Pastijn product is introduced so that, on the level of e-varieties and pseudoe-varieties, this product and the regular semidirect product by completely simple semigroups ‘almost always’ coincide. This is applied to give a model of the bifree objects in every e-variety formed as a regular semidirect product of a variety of inverse semigroups by a variety of completely simple semigroups that is not a group variety.
A challenge by R. Padmanabhan to prove by group theory the commutativity of cancellative semigroups satisfying a particular law has led to the proof of more general semigroup laws being equivalent to quite simple ones.
The associativity of the regular semidirect product of existence varieties introduced by Jones and Trotter was proved under certain condition by Reilly and Zhang. Here we estabilsh associativity in many new cases. Moreover, we prove that the regular semidirect product is right distributive with respect to the join operation. In particular, both associativity and right distriutivity yiel within the varieties of completely simple semigroups. Analogous results are obtainedj for e-pseudovarieties of finite regular semigroups.
An existence variety of regular semigroups is a class of regular semigroups which is closed under the operations of forming all homomorphic images, all regular subsemigroups and all direct products. In this paper we generalize results on varieties of inverse semigroups to existence varieties of orthodox semigroups.
The mapping which assigns to each existence variety of locally inverse semigroups the class of all pseudosemilattices of idempotents of members of is shown to be a complete, surjective homomorphism from the lattice of existence varieties of locally inverse semigroups onto the lattice of varieties of pseudosemilattices.