We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.
We show that for every finite set of prime numbers $S$, there are at most finitely many singular moduli that are $S$-units. The key new ingredient is that for every prime number $p$, singular moduli are $p$-adically disperse. We prove analogous results for the Weber modular functions, the $\lambda$-invariants and the McKay–Thompson series associated with the elements of the monster group. Finally, we also obtain that a modular function that specializes to infinitely many algebraic units at quadratic imaginary numbers must be a weak modular unit.
Hilbert schemes are an object arising from geometry and are closely related to physics and modular forms. Recently, there have been investigations from number theorists about the Betti numbers and Hodge numbers of the Hilbert schemes of points of an algebraic surface. In this paper, we prove that Göttsche's generating function of the Hodge numbers of Hilbert schemes of $n$ points of an algebraic surface is algebraic at a CM point $\tau$ and rational numbers $z_1$ and $z_2$. Our result gives a refinement of the algebraicity on Betti numbers.
We generate ray-class fields over imaginary quadratic fields in terms of Siegel–Ramachandra invariants, which are an extension of a result of Schertz. By making use of quotients of Siegel–Ramachandra invariants we also construct ray-class invariants over imaginary quadratic fields whose minimal polynomials have relatively small coefficients, from which we are able to solve certain quadratic Diophantine equations.
It is well known that every elliptic curve over the rationals admits a parametrization by means of modular functions. In this short note, we show that only finitely many elliptic curves over $\mathbf{Q}$ can be parametrized by modular units. This answers a question raised by W. Zudilin in a recent work on Mahler measures. Further, we give the list of all elliptic curves $E$ of conductor up to 1000 parametrized by modular units supported in the rational torsion subgroup of $E$. Finally, we raise several open questions.
In this paper we extend K. Rubin's methods to prove the Gras conjecture for abelian extensions of a given imaginary quadratic field $k$ and prime numbers $p$ that divide the number of roots of unity in $k$.
We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture for CM elliptic curves concerning certain special values of the Katz two-variable p-adic L-function that lie outside the range of p-adic interpolation.
We obtain Hauptmoduls of genus zero congruence subgroups of the type $\Gamma _{0}^{+}\left( p \right)\,\,:={{\Gamma }_{0}}\left( p \right)+{{w}_{p}}$, where $p$ is a prime and ${{w}_{p}}$ is the Atkin–Lehner involution. We then use the Hauptmoduls, along with modular functions on ${{\Gamma }_{1}}\left( p \right)$ to construct families of cyclic extensions of quadratic number fields. Further examples of cyclic extension of bi-quadratic and tri-quadratic number fields are also given.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.