No CrossRef data available.
Article contents
NORMAL BASES FOR FUNCTION FIELDS
Part of:
Discontinuous groups and automorphic forms
Field extensions
Algebraic number theory: global fields
Arithmetic algebraic geometry
Published online by Cambridge University Press: 06 May 2024
Abstract
In function fields in positive characteristic, we provide a concrete example of completely normal elements for a finite Galois extension. More precisely, for a nonabelian extension, we construct completely normal elements for Drinfeld modular function fields using Siegel functions in function fields. For an abelian extension, we construct completely normal elements for cyclotomic function fields.
- Type
- Research Article
- Information
- Copyright
- © The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.
Footnotes
This work was supported by JSPS KAKENHI Grant Number 21K03192.
References
Bae, S., ‘The arithmetic of Carlitz polynomials’, J. Korean Math. Soc. 35 (1998), 341–260.Google Scholar
Blessenohl, D. and Johnson, K., ‘Eine Verschärfung des Satzes von der Normalbasis’, J. Algebra 103 (1986), 141–159.Google Scholar
Gekeler, E.-U., ‘Modulare Einheiten für Functionenkörper’, J. reine angew. Math. 348 (1984), 94–115.Google Scholar
Gekeler, E.-U., ‘A product expansion for the discriminant function of Drinfeld modules of rank two’, J. Number Theory 21 (1985), 135–140.CrossRefGoogle Scholar
Gekeler, E.-U., Drinfeld Modular Curves, Lecture Notes in Mathematics, 1231 (Springer, Berlin–Heidelberg, 1986).Google Scholar
Hachenberger, D., ‘Universal normal bases for the abelian closure of the field of rational numbers’, Acta Arith. 93 (2000), 329–341.Google Scholar
Hamahata, Y., ‘Chowla’s theorem over function fields’, Int. J. Number Theory 14 (2018), 1689–1698.Google Scholar
Koo, J. K. and Shin, D. H., ‘Completely normal elements in some finite abelian extensions’, Cent. Eur. J. Math. 11 (2013), 1725–1731.Google Scholar
Koo, J. K., Shin, D. H. and Yoon, D. S., ‘Normal bases for modular function fields’, Bull. Aust. Math. Soc. 95 (2017), 384–392.Google Scholar
Leopoldt, H.-W., ‘Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers’, J. reine angew. Math. 201 (1959), 119–149.Google Scholar
Okada, T., ‘On an extension of a theorem of S. Chowla’, Acta Arith. 38 (1980/81), 341–345.Google Scholar
Schertz, R., ‘Galoismodulstruktur und elliptische Funktionen’, J. Number Theory 39 (1991), 285–326.CrossRefGoogle Scholar