Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T13:53:43.434Z Has data issue: false hasContentIssue false

Humans, fruit flies, and automatons

Published online by Cambridge University Press:  24 October 2012

Evan Charney*
Affiliation:
Department of Public Policy and Political Science, Duke Institute for Brain Sciences, Duke Institute for Genome Sciences and Policy, Duke University, Durham, NC 90239. http://fds.duke.edu/db/Sanford/faculty/echar

Abstract

My response is divided into four sections: (1) is devoted to a potpourri of commentaries that are essentially in agreement with the substance of my target article (with one exception); in (2) I address, in response to one of the commentaries, several issues relating to the use of candidate gene association studies in behavior genetics (in particular those proposing a specific G×E interaction); in (3) I provide a detailed response to several defenses of the twin study methodology; and in (4) I conclude with several reflections on that methodology and the conception of human nature it has fostered.

Type
Author's Response
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alford, J. R., Funk, C. L. & Hibbing, J. R. (2005) Are political orientations genetically transmitted? American Political Science Review 99(2):153–67.CrossRefGoogle Scholar
Alia-Klein, N., Kriplani, A., Pradhan, K., Ma, J. M., Logan, J., Williams, B. & Fowler, J. S. (2008) The MAO-A genotype does not modulate resting brain metabolism in adults. Psychiatry Research: Neuroimaging 164(1):7376.CrossRefGoogle Scholar
Allen, V. M., Wilson, R. D. & Cheung, A. (2006) Pregnancy outcomes after assisted reproductive technology. Journal of Obstetrics and Gynaecology Cancer 28(3):220–50.Google ScholarPubMed
Ballestar, E. (2009) Epigenetics lessons from twins: Prospects for autoimmune disease. Clinical Reviews in Allergy and Immunology 39(1):3041.CrossRefGoogle Scholar
Barazandeh, A., Moghbeli, S. M., Vatankhah, M. & Mohammadabadi, M. (2012) Estimating non-genetic and genetic parameters of pre-weaning growth traits in Raini Cashmere goat. Tropical Animal Health and Production 44(4):811–17.CrossRefGoogle ScholarPubMed
Bijma, P. (2006) Estimating maternal genetic effects in livestock. Journal of Animal Science 84(4):800806.CrossRefGoogle ScholarPubMed
Bouchard, T. J. (2004) Genetic influence on human psychological traits: A survey. Current Directions in Psychological Science 13:148–51.CrossRefGoogle Scholar
Bourthoumieu, S., Esclaire, F. & Yardin, C. (2006) Chimerism in twins: Caution is needed in interpretation of karyotypes. American Journal of Medical Genetics Part A 140A(5):533–35.CrossRefGoogle Scholar
Bourthoumieu, S., Yardin, C., Terro, F., Gilbert, B., Laroche, C., Saura, R. & Esclaire, F. (2005) Monozygotic twins concordant for blood karyotype, but phenotypically discordant: A case of mosaic chimerism. American Journal of Medical Genetics Part A 135(2):190–94.CrossRefGoogle ScholarPubMed
Bridgham, J. T., Carroll, S. M. & Thornton, J. W. (2006) Evolution of hormone-receptor complexity by molecular exploitation. Science 312(5770):97101.CrossRefGoogle ScholarPubMed
Bruder, C. E. G., Piotrowski, A., Gijsbers, A. A. C. J., Andersson, R., Erickson, S., de Stâhl, T. D. & Dumanski, J. P. (2008a) Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. American Journal of Human Genetics 82(3):763–71.CrossRefGoogle ScholarPubMed
Buckholtz, J. W. & Meyer-Lindenberg, A. (2008) MAOA and the neurogenetic architecture of human aggression. Trends in Neurosciences 31(3):120–29.CrossRefGoogle ScholarPubMed
Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W. & Poulton, R. (2002) Role of genotype in the cycle of violence in maltreated children. Science 297(5582):851–54.CrossRefGoogle ScholarPubMed
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., & Harrington, H. (2003) Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science 301:386–89.CrossRefGoogle ScholarPubMed
Charney, E. & English, W. (2012) Candidate genes and political behavior. American Political Science Review 106(1):134.CrossRefGoogle Scholar
Chevrud, J. M. & Wolf, J. B. (2009) The genetics and evolutionary consequences of maternal effects. In: Maternal effects in mammals, ed. Maestripieri, D. & Mateo, J., pp. 1137. University of Chicago Press.CrossRefGoogle Scholar
Cirulli, E. T. & Goldstein, D. B. (2007) In vitro assays fail to predict in vivo effects of regulatory polymorphisms. Human Molecular Genetics 16(16):1931–39.CrossRefGoogle ScholarPubMed
Clune, J., Misevic, D., Ofria, C., Lenski, R. E., Elena, S. F. & Sanjuán, R. (2008) Natural selection fails to optimize mutation rates for long-term adaptation on rugged fitness landscapes. PLoS Computational Biology 4(9):e1000187.CrossRefGoogle ScholarPubMed
Cowperthwaite, M. C., Bull, J. J. & Meyers, L. A. (2006) From bad to good: Fitness reversals and the ascent of deleterious mutations. PLoS Computational Biology 2(10):e141.CrossRefGoogle ScholarPubMed
Day, J. J. & Sweatt, J. D. (2011) Epigenetic mechanisms in cognition. Neuron 70(5):813–29. doi: 10.1016/j.neuron.2011.05.019.CrossRefGoogle ScholarPubMed
De Neve, J.-E. & Fowler, J. H. (2010) The MAOA gene predicts credit card debt. Social Science Research Network. Available at SSRN: http://ssrn.com/abstract=1457224 or http://dx.doi.org/10.2139/ssrn.1457224.CrossRefGoogle Scholar
Dolinoy, D. C., Weidman, J. R. & Jirtle, R. L. (2007) Epigenetic gene regulation: Linking early developmental environment to adult disease. Reproductive Toxicology 23(3):297307.CrossRefGoogle ScholarPubMed
Erlich, Y. (2011) Blood ties: Chimerism can mask twin discordance in high-throughput sequencing. Twin Research and Human Genetics 14(2):137–43.CrossRefGoogle ScholarPubMed
Falconer, D. S. (1989) Introduction to quantitative genetics. Wiley.Google Scholar
Feng, J.-M., Lin, G.-X., Sheu, R.-L. & Xia, Y. (2010) Duality and solutions for quadratic programming over single non-homogeneous quadratic constraint. Journal of Global Optimization 119.Google Scholar
Finkel, D., Pedersen, N. L., Plomin, R. & McClearn, G. E. (1998) Longitudinal and cross-sectional twin data on cognitive abilities in adulthood: The Swedish adoption/twin study of aging. Developmental Psychology 34(6):1400–13.CrossRefGoogle ScholarPubMed
Floderus-Myrhed, B., Pedersen, N. & Rasmuson, I. (1980) Assessment of heritability for personality, based on a short-form of the Eysenck Personality Inventory: A study of 12,898 twin pairs. Behavioral Genetics 10(2):153–62.CrossRefGoogle Scholar
Fowler, J. H., Baker, L. A. & Dawes, C. T. (2008) Genetic variation in political participation. American Political Science Review 102(02):233–48.CrossRefGoogle Scholar
Fowler, J. S., Alia-Klein, N., Kriplani, A., Logan, J., Williams, B., Zhu, W. & Wang, G.-J. (2007) Evidence that brain MAO A activity does not correspond to MAO A genotype in healthy male subjects. Biological Psychiatry 62(4):355–58.CrossRefGoogle Scholar
Fraga, M. F., Ballesta, E., Paz, M. F., Ropero, S. & Setien, F. (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences USA 102:10604.CrossRefGoogle ScholarPubMed
Gillespie, J. (1991) The causes of molecular evolution. Oxford University Press.Google Scholar
Gottesman, I. I. & Shields, J. (1973) Genetic theorizing and schizophrenia. British Journal of Psychiatry 122(566):1530.CrossRefGoogle ScholarPubMed
Gregory, K. E., Cundiff, L. V. & Koch, R. M. (1985) Maternal effects in four diverse breeds of cattle. Beef Research Program: Roman L. Hruska U.S. Meat Animal Research Center 57:2022.Google Scholar
Guo, S. W. (2001) Does higher concordance in monozygotic twins than in dizygotic twins suggest a genetic component? Human Heredity 51(3):121–32.CrossRefGoogle ScholarPubMed
Harish, A. & Caetano-Anollés, G. (2012) Ribosomal history reveals origins of modern protein synthesis. PLoS ONE 7(3):e32776.CrossRefGoogle ScholarPubMed
Haworth, C. M. A., Dale, P. S. & Plomin, R. (2009) The etiology of science performance: Decreasing heritability and increasing importance of the shared environment from 9 to 12 years of age. Child Development 80(3):662–73.CrossRefGoogle Scholar
Haworth, C. M. A., Wright, M. J., Luciano, M., Martin, N. G., de Geus, E. J. C., van Beijsterveldt, C. E. M., Bartels, M., Posthuma, D., Boomsma, D. I., Davis, O. S. P., Kovas, Y., Corley, R. P., DeFries, J. C., Hewitt, J. K., Olson, R. K., Rhea, S.-A., Wadsworth, S. J., Iacono, W. G., McGue, M., Thompson, L. A., Hart, S. A., Petrill, S. A., Lubinski, D. & Plomin, R. (2010) The heritability of general cognitive ability increases linearly from childhood to young adulthood. Molecular Psychiatry 15(11):1112–20. doi: 10.1038/mp.2009.55.CrossRefGoogle ScholarPubMed
Jablonka, E. & Lamb, M. J. (2006) Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press.Google Scholar
Jammes, H., Junien, C. & Chavatte-Palmer, P. (2011) Epigenetic control of development and expression of quantitative traits. Reproduction, Fertility and Development 23(1):6474.CrossRefGoogle ScholarPubMed
Jonassaint, C. R. (2010) The heritability of self-esteem from adolescence to young adulthood. The New School Psychology Bulletin 7(1):315.Google Scholar
Jonsson, A. M., Uzunel, M., Gotherstrom, C., Papadogiannakis, N. & Westgren, M. (2008) Maternal microchimerism in human fetal tissues. American Journal of Obstetrics & Gynecology 198(3):14.CrossRefGoogle ScholarPubMed
Kaminsky, Z. A., Tang, T., Wang, S. C., Ptak, C., Oh, G. H., Wong, A. H., Feldcamp, L. A., Virtanen, C., Halfvarson, J., Tysk, C., McRae, A. F., Visscher, P. M., Montgomery, G. W., Gottesman, I. I., Martin, N. G. & Petronis, A. (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nature Genetics 41(2):240–45.CrossRefGoogle ScholarPubMed
Kaplan, L., Foster, R., Shen, Y., Parry, D. M., McMaster, M. L., O'Leary, M. C. & Gusella, J. F. (2010) Monozygotic twins discordant for neurofibromatosis 1. American Journal of Medical Genetics Part A 152A(3):601606.CrossRefGoogle ScholarPubMed
Katari, S., Turan, N., Bibikova, M., Erinle, O., Chalian, R., Foster, M. & Sapienza, C. (2009) DNA methylation and gene expression differences in children conceived in vitro or in vivo. Human Molecular Genetics 18(20):3769–78.CrossRefGoogle ScholarPubMed
Kato, T., Iwamoto, K., Kakiuchi, C., Kuratomi, G. & Okazaki, Y. (2005) Genetic or epigenetic difference causing discordance between monozygotic twins as a clue to molecular basis of mental disorders. Molecular Psychiatry 10(7):622–30.CrossRefGoogle ScholarPubMed
Kim, Y. & Orr, H. A. (2005) Adaptation in sexuals vs. asexuals: Clonal interference and the Fisher-Muller model. Genetics 171(3):1377–86.CrossRefGoogle ScholarPubMed
Kimura, M. (1985) The role of compensatory neutral mutations in molecular evolution. Journal of Genetics 64(1):719.CrossRefGoogle Scholar
Koivula, M., Stranden, I. & Mantysaari, E. A. (2009) Direct and maternal genetic effects on first litter size, maturation age, and animal size in Finnish minks. Journal of Animal Science 87(10):3083–88.CrossRefGoogle ScholarPubMed
Korkeila, M., Kaprio, J., Rissanen, A. & Koskenvuo, M. (1991) Effects of gender and age on the heritability of body mass index. International Journal of Obesity 15(10):647–54.Google ScholarPubMed
Kryazhimskiy, S., Tkačik, G. & Plotkin, J. B. (2009) The dynamics of adaptation on correlated fitness landscapes. Proceedings of the National Academy of Sciences 106(44):18638–43.CrossRefGoogle ScholarPubMed
Lagercrantz, H. (2010) The newborn brain: Neuroscience and clinical applications. Cambridge University Press.CrossRefGoogle Scholar
Lenski, R. E., Ofria, C., Pennock, R. T. & Adami, C. (2003) The evolutionary origin of complex features. Nature 423(6936):139–44.CrossRefGoogle ScholarPubMed
Levenson, J. M., Roth, T. L., Lubin, F. D., Miller, C. A., Huang, I.-C., Desai, P. & Sweatt, J. D. (2006) Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus. Journal of Biological Chemistry 281(23):15763–73.CrossRefGoogle ScholarPubMed
Lubin, F. D., Roth, T. L. & Sweatt, J. D. (2008) Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. Journal of Neuroscience 28(42):10576–86.CrossRefGoogle ScholarPubMed
Machin, G. (2009) Non-identical monozygotic twins, intermediate twin types, zygosity testing, and the non-random nature of monozygotic twinning: A review. American Journal of Medical Genetics Part C: Seminars in Medical Genetics 151C(2):110–27.CrossRefGoogle ScholarPubMed
Maniatis, N. & Pollott, G. E. (2002) Nuclear, cytoplasmic, and environmental effects on growth, fat, and muscle traits in Suffolk lambs from a sire referencing scheme. Journal of Animal Science 80(1):5767.CrossRefGoogle ScholarPubMed
Martin, G. M. (2005) Epigenetic drift in aging identical twins. Proceedings of the National Academy of Sciences 102(30):10413–34.CrossRefGoogle ScholarPubMed
Maruoka, T., Kodomari, I., Yamauchi, R., Wada, E. & Wada, K. (2009) Maternal enrichment affects prenatal hippocampal proliferation and open-field behaviors in female offspring mice. Neuroscience Letters 454(1):2832.CrossRefGoogle ScholarPubMed
McClearn, G. E., Johansson, B., Berg, S., Pedersen, N. L., Ahern, F., Petrill, S. A. & Plomin, R. (1997) Substantial genetic influence on cognitive abilities in twins 80 or more years old. Science 276(5318):1560–63.CrossRefGoogle ScholarPubMed
McDonald, S. D., Han, Z., Mulla, S., Murphy, K. E., Beyene, J. & Ohlsson, A. (2009) Preterm birth and low birth weight among in vitro fertilization singletons: A systematic review and meta-analyses. European Journal of Obstetrics & Gynecology and Reproductive Biology 146(2):138–48.CrossRefGoogle ScholarPubMed
McGue, M. & Christensen, K. (2002) The heritability of level and rate-of-change in cognitive functioning in Danish twins aged 70 years and older. Experimental Aging Research 28(4):435–51.CrossRefGoogle ScholarPubMed
Mill, J., Dempster, E., Caspi, A., Williams, B., Moffitt, T. & Craig, I. (2006) Evidence for monozygotic twin (MZ) discordance in methylation level at two CpG sites in the promoter region of the catechol-O-methyltransferase (COMT) gene. American Journal of Medical Genetics Part B Neuropsychiatric Genetics 141:421.Google Scholar
Miller, C. A., Campbell, S. L. & Sweatt, J. D. (2008) DNA methylation and histone acetylation work in concert to regulate memory formation and synaptic plasticity. Neurobiology of Learning and Memory 89(4):599603.CrossRefGoogle ScholarPubMed
Miller, C. A., Gavin, C. F., White, J. A., Ryley Parrish, R, Honasoge, A., Yancey, C. R. & Sweatt, J. D. (2010) Cortical DNA methylation maintains remote memory. Nature Neuroscience 13(6):664–66.CrossRefGoogle ScholarPubMed
Miller, G., Zhu, G., Wright, M. J., Hansell, N. K. & Martin, N. G. (2012) The heritability and genetic correlates of mobile phone use: A twin study of consumer behavior. Twin Research and Human Genetics 15(1):19.CrossRefGoogle ScholarPubMed
Molenaar, P. C. M. (2010) On the limits of standard quantitative genetic modeling of inter-individual variation: Extensions, ergodic conditions and a new genetic factor model of intra-individual variation. In: Handbook of developmental science, behavior, and genetics, ed. Hood, K. E., Halpern, C. T., Greenberg, G. & Lerner, R. M., pp. 626–48, Blackwell.CrossRefGoogle Scholar
Mychasiuk, R., Zahir, S., Schmold, N., Ilnytskyy, S., Kovalchuk, O. & Gibb, R. (2012) Parental enrichment and offspring development: Modifications to brain, behavior and the epigenome. Behavioral Brain Research 228(2):294–98.CrossRefGoogle ScholarPubMed
Noble, D. (2010) Biophysics and systems biology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368(1914):1125–39.CrossRefGoogle ScholarPubMed
Nordquist, N. & Oreland, L. (2010) Serotonin, genetic variability, behaviour, and psychiatric disorders – A review. Upsala Journal of Medical Sciences 115(1):210.CrossRefGoogle ScholarPubMed
O'Donnell, C. P. F., Pertile, M. D., Sheffield, L. J. & Sampson, A. (2004) Monozygotic twins with discordant karyotypes: A case report. The Journal of Pediatrics 145(3):406408.CrossRefGoogle ScholarPubMed
Ollikainen, M., Smith, K. R., Joo, E. J.-H., Kiat Ng, H., Andronikos, R., Novakovic, B. & Craig, J. M. (2010) DNA methylation analysis of multiple tissues from newborn twins reveals both genetic and intrauterine components to variation in the human neonatal epigenome. Human Molecular Genetics 19(21):4176–88.CrossRefGoogle ScholarPubMed
Orr, H. A. (2002) The population genetics of adaptation: The adaptation of DNA sequences. Evolution 56(7):1317–30.Google ScholarPubMed
Østman, B., Hintze, A. & Adami, C. (2012) Impact of epistasis and pleiotropy on evolutionary adaptation. Proceedings of the Royal Society B: Biological Sciences 279(1727):247–56.CrossRefGoogle ScholarPubMed
Pedersen, N. L., Plomin, R., McClearn, G. E. & Friberg, L. (1988) Neuroticism, extraversion, and related traits in adult twins reared apart and reared together. Journal of Personality and Social Psychology: Washington 55(6):950.CrossRefGoogle ScholarPubMed
Petronis, A., Gottesman, II, Kan, P., Kennedy, J. L., Basile, V. S. & Paterson, A. D. (2003) Monozygotic twins exhibit numerous epigenetic differences: Clues to twin discordance? Schizophrenia Bulletin 29:169–78.CrossRefGoogle ScholarPubMed
Phillips, P.C., Otto, S. P. & Whitlock, M. C. (2000) Beyond the average: The evolutionary importance of gene interactions and variability of epistatic effects. In: Epistasis and the evolutionary process, ed. Brodie, E. D., Wade, M. J. & Wolf, J. B., pp. 2038. Oxford University Press.Google Scholar
Plomin, R. & Daniels, D. (1987) Why are children in the same family so different? Behavioral and Brain Sciences 10:116.CrossRefGoogle Scholar
Plomin, R., Pedersen, N. L., Lichtenstein, P. & McClearn, G. E. (1994) Variability and stability in cognitive abilities are largely genetic later in life. Behavioral Genetics 24(3):207–15.CrossRefGoogle ScholarPubMed
Poelwijk, F. J., Kiviet, D. J. & Tans, S. J. (2006) Evolutionary potential of a duplicated repressor–operator pair: Simulating pathways using mutation data. PLoS Computational Biology 2(5):e58.CrossRefGoogle ScholarPubMed
Poulsen, P., Esteller, M., Vaag, A. & Frage, M. F. (2007) The epigenetic basis of twin discordance in age-related diseases. Pediatric Research 61(5, Part 2):38R42R.CrossRefGoogle ScholarPubMed
Raevuori, A., Dick, D. M., Keski-Rahkonen, A., Pulkkinen, L., Rose, R. J., Rissanen, A. & Silventoinen, K. (2007) Genetic and environmental factors affecting self-esteem from age 14 to 17: A longitudinal study of Finnish twins. Psychological Medicine 37(11):1625–33.CrossRefGoogle ScholarPubMed
Reynolds, C. A., Finkel, D., McArdle, J. J., Gatz, M., Berg, S. & Pedersen, N. L. (2005) Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Developmental Psychology 41(1):316.CrossRefGoogle ScholarPubMed
Risch, N., Herrell, R., Lehner, T., Liang, K. Y., Eaves, L., Hoh, J. & Merikangas, K. R. (2009) Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression a meta-analysis. JAMA 301(23):2462–71.CrossRefGoogle ScholarPubMed
Rosa, A., Picchioni, M. M., Kalidindi, S., Loat, C. S., Knight, J., Toulopoulou, T. & Craig, I. W. (2008) Differential methylation of the X-chromosome is a possible source of discordance for bipolar disorder female monozygotic twins. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 147B(4):459–62.CrossRefGoogle ScholarPubMed
Russell, A. F. & Lummaa, V. (2009) Maternal effects in cooperative breeders: From hymenopterans to humans. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1520):1143–67.CrossRefGoogle ScholarPubMed
Sabol, S. Z., Hu, S. & Hamer, D. (1998) A functional polymorphism in the monoamine oxidase A gene promoter. Human Genetics 103(3):273–79.CrossRefGoogle ScholarPubMed
Saviouk, V., Hottenga, J.-J., Slagboom, E. P., Distel, M. A., de Geus, E. J. C., Willemsen, G. & Boomsma, D. I. (2011) ADHD in Dutch adults: Heritability and linkage study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics 156(3):352–62.CrossRefGoogle Scholar
Schrödinger, E. (1944) Cambridge, UK: Cambridge University Press.Google Scholar
Shih, J. C. & Thompson, R. F. (1999) Monoamine oxidase in neuropsychiatry and behavior. American Journal of Human Genetics 65:593–98.CrossRefGoogle ScholarPubMed
Simonson, I. & Sela, A. (2011) On the heritability of consumer decision making: An exploratory approach for studying genetic effects on judgment and choice. Journal of Consumer Research 37(6):951–66.CrossRefGoogle Scholar
Turan, N., Katari, S., Gerson, L. F., Chalian, R., Foster, M. W., Gaughan, J. P. & Sapienza, C. (2010) Inter- and intra-individual variation in Allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genetics 6(7):e1001033.CrossRefGoogle ScholarPubMed
Valdar, W., Solberg, L. C., Gauguier, D., Cookson, W. O., Rawlins, J. N. P., Mott, R. & Flint, J. (2006) Genetic and environmental effects on complex traits in mice. Genetics 174(2):959–84.CrossRefGoogle ScholarPubMed
van Montfoort, A. P. A., Hanssen, L. L. P., de Sutter, P., Viville, S., Geraedts, J. P. M. & de Boer, P. (2012) Assisted reproduction treatment and epigenetic inheritance. Human Reproduction Update 18(2):171–97.CrossRefGoogle ScholarPubMed
Viken, R. J., Rose, R. J., Kaprio, J. & Koskenvuo, M. (1994) A developmental genetic analysis of adult personality: Extraversion and neuroticism from 18 to 59 years of age. Journal of Personality and Social Psychology 66(4):722–30.CrossRefGoogle ScholarPubMed
Wade, M. J. (1998) The evolutionary genetics of maternal Effects. In: Maternal effects as adaptations, ed. Mousseau, T. A. & Fox, C. W., pp. 521. Oxford University Press.CrossRefGoogle Scholar
Wen, J., Jiang, J., Ding, C., Dai, J., Liu, Y., Xia, Y. & Hu, Z. (2012) Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: A meta-analysis. Fertility and Sterility. 97(6):1331–37.CrossRefGoogle ScholarPubMed
Weyler, W., Hsu, Y. P. & Breakefield, X. O. (1990) Biochemistry and genetics of monoamine oxidase. Pharmacology and Therapeutics 47(3):391417.CrossRefGoogle ScholarPubMed
Willer, C. J., Herrera, B. M., Morrison, K. M., Sadovnick, A. D. & Ebers, G. C. (2006) Association between microchimerism and multiple sclerosis in Canadian twins. Journal of Neuroimmunology 179(1–2):145–51.CrossRefGoogle ScholarPubMed
Wrighton, S. A. & Stevens, J. C. (1992) The human hepatic cytochromes-p450 involved in drug-metabolism. Critical Reviews in Toxicology 22(1):121.CrossRefGoogle ScholarPubMed
Zhou, Z, Yuan, Q., Mash, D. C. & Goldman, D. (2011) Substance-specific and shared transcription and epigenetic changes in the human hippocampus chronically exposed to cocaine and alcohol. Proceedings of the National Academy of Sciences USA. 108(16):6626–31.CrossRefGoogle ScholarPubMed
Zwarts, L., Magwire, M. M., Carbone, M. A., Versteven, M., Herteleer, L., Anholt, R. R. H. & Mackay, T. F. C. (2011) Complex genetic architecture of Drosophila aggressive behavior. Proceedings of the National Academy of Sciences 108(41):17070–75.CrossRefGoogle ScholarPubMed