Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T13:16:42.676Z Has data issue: false hasContentIssue false

Is genomics bad for you?

Published online by Cambridge University Press:  24 October 2012

Benjamin J. A. Dickins*
Affiliation:
Biology Department, Pennsylvania State University, University Park, PA 16802. [email protected]://www.bendickins.com/

Abstract

The plasticity of the genome complicates genetic causation but should be investigated from a functional perspective. Specific adaptive hypotheses are referenced in the target article, but it is also necessary to explain how the integrity of the genome is maintained despite processes that tend towards its diversification and degradation. These include the accumulation of deleterious changes and intragenomic conflict.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Archetti, M. (2009) Survival of the steepest: Hypersensitivity to mutations as an adaptation to soft selection. Journal of Evolutionary Biology 22(4):740–50.Google Scholar
Braschi, E. & McBride, H. M. (2010) Mitochondria and the culture of the Borg: Understanding the integration of mitochondrial function within the reticulum, the cell, and the organism. Bioessays 32(11):958–66.Google Scholar
Bull, J. J., Sanjuán, R. & Wilke, C. O. (2007) Theory of lethal mutagenesis for viruses. Journal of Virology 81(6):2930–39.Google Scholar
Burt, A. & Trivers, R. L. (2006) Genes in conflict: the biology of selfish genetic elements. Belknap Press.Google Scholar
Choi, S. K., Yoon, S. R., Calabrese, P. & Arnheim, N. (2012) Positive selection for new disease mutations in the human germline: Evidence from the heritable cancer syndrome multiple endocrine neoplasia type 2B. PLoS Genetics 8(2):e1002420.Google Scholar
Cockett, N. E., Jackson, S. P., Shay, T. L., Farnir, F., Berghmans, S., Snowder, G. D., Nielsen, D. M. & Georges, M. (1996) Polar overdominance at the ovine callipyge locus. Science 273(5272):236–38.Google Scholar
Dickins, T. E. & Dickins, B. J. A. (2008) Mother nature's tolerant ways: Why non-genetic inheritance has nothing to do with evolution. New Ideas in Psychology 26:4154.Google Scholar
Edmonds, D. K., Lindsay, K. S., Miller, J. F., Williamson, E. & Wood, P. J. (1982) Early embryonic mortality in women. Fertility and Sterility 38:447–53.Google Scholar
Fan, W., Waymire, K. G., Narula, N., Li, P., Rocher, C., Coskun, P. E., Vannan, M. A., Narula, J., Macgregor, G. R. & Wallace, D. C. (2008) A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 319(5865):958–62.Google Scholar
Goriely, A., McVean, G. A., Röjmyr, M., Ingemarsson, B. & Wilkie, A. O. (2003) Evidence for selective advantage of pathogenic FGFR2 mutations in the male germ line. Science 301(5633):643–46.Google Scholar
Haig, D. & Westoby, M. (1989) Parent-specific gene expression and the triploid endosperm. American Naturalist 134:147–55.CrossRefGoogle Scholar
Hastings, I. M. (1991) Germline selection: Population genetic aspects of the sexual/asexual life cycle. Genetics 129(4):1167–76.Google Scholar
Keightley, P. D. (2012) Rates and fitness consequences of new mutations in humans. Genetics 190(2):295304.Google Scholar
Kelsey, G. (2011) Epigenetics and the brain: Transcriptome sequencing reveals new depths to genomic imprinting. Bioessays 33(5):362–67.Google Scholar
Keverne, E. B. & Curley, J. P. (2008) Epigenetics, brain evolution and behaviour. Frontiers in Neuroendocrinology 29(3):398412.Google Scholar
Kondrashov, A. S. (2003) Direct estimates of human per nucleotide mutation rates at 20 loci causing Mendelian diseases. Human Mutation 21(1):1227.Google Scholar
Krakauer, D. C. & Plotkin, J. B. (2002) Redundancy, antiredundancy, and the robustness of genomes. Proceedings of the National Academy of the United States of America 99(3):1405–409.Google Scholar
Lynch, L. (2010) Rate, molecular spectrum, and consequences of human mutation. Proceedings of the National Academy of the United States of America 107(3):961–68.Google Scholar
Macklon, N. S., Geraedts, J. P. & Fauser, B. C. (2002) Conception to ongoing pregnancy: The “black box” of early pregnancy loss. Human Reproduction Update 8(4):333–43.Google Scholar
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., Valle, D., Whittemore, A. S., Boehnke, M., Clark, A. G., Eichler, E. E., Gibson, G., Haines, J. L., Mackay, T. F., McCarroll, S. A. & Visscher, P. M. (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–53.Google Scholar
Muller, H. J. (1964) The relation of recombination to mutational advance. Mutation Research 1:29.Google Scholar
Ng, R. K. & Gurdon, J. B. (2008) Epigenetic inheritance of cell differentiation status. Cell Cycle 7(9):1173–77.Google Scholar
Reizel, Y., Itzkovitz, S., Adar, R., Elbaz, J., Jinich, A., Chapal-Ilani, N., Maruvka, Y. E., Nevo, N., Marx, Z., Horovitz, I., Wasserstrom, A., Mayo, A., Shur, I., Benayahu, D., Skorecki, K., Segal, E., Dekel, N. & Shapiro, E. (2012) Cell lineage analysis of the Mammalian female germline. PLoS Genetics 8(2):e1002477.Google Scholar
Robson, S. L. & Wood, B. (2008) Hominin life history: Reconstruction and evolution. Journal of Anatomy 212:394425.Google Scholar
Stewart, J. B., Freyer, C., Elson, J. L., Wredenberg, A., Cansu, Z., Trifunovic, A. & Larsson, N. G. (2008) Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biology 6(1):e10.Google Scholar
Stewart, L. R., Hall, A. L., Kang, S.-H. L., Shaw, C. A. & Beaudet, A. L. (2011) High frequency of known copy number abnormalities and maternal duplication 15q11-q13 in patients with combined schizophrenia and epilepsy. BMC Medical Genetics 12:154.Google Scholar
Trivers, R. (2000) The elements of a scientific theory of self-deception. Annals of the New York Academy of Sciences 907:114–31.Google Scholar
Tycko, B. (2006) Imprinted genes in placental growth and obstetric disorders. Cytogenetic and Genome Research 113(1–4):271–78.Google Scholar
Wallace, B. (1975) Hard and soft selection revisited. Evolution 29:465–73.Google Scholar
Yu, N., Jensen-Seaman, M. I., Chemnick, L., Ryder, O. & Li, W.-H. (2004) Nucleotide diversity in gorillas. Genetics 166:1375–83.CrossRefGoogle ScholarPubMed