Let
${{\mathbf{P}}^{n}}$ be the
$n$-dimensional projective space over some algebraically closed field
$k$ of characteristic 0. For an integer
$t\,\ge \,3$ consider the invertible sheaf
$O\left( t \right)$ on
${{\mathbf{P}}^{n}}$ (Serre twist of the structure sheaf). Let
$N\,=\,\left( \underset{n}{\mathop{t+n}}\, \right)$, the dimension of the space of global sections of
$O\left( t \right)$, and let
$k$ be an integer satisfying
$0\,\le \,k\,\le \,N\,-\,\left( 2n\,+\,2 \right)$. Let
${{P}_{1}},\ldots ,{{P}_{k}}$ be general points on
${{\mathbf{P}}^{n}}$ and let
$\pi :\,X\,\to \,{{\mathbf{P}}^{n}}$ be the blowing-up of
${{\mathbf{P}}^{n}}$ at those points. Let
${{E}_{i}}\,=\,{{\pi }^{-1}}\left( {{P}_{i}} \right)$ with
$1\,\le \,i\,\le \,k$ be the exceptional divisor. Then
$M={{\pi }^{*}}\left( O(t) \right)\,\otimes \,{{O}_{X}}\left( -{{E}_{1}}-\cdots -{{E}_{k}} \right)$ is a very ample invertible sheaf on
$X$.