Scaling contact lithography (microcontact printing, microflexography, and nanoimprint lithography) to large roll-to-roll platforms will enable high speed, low cost lithographic patterning of surfaces. However, many details of robust implementations at the roll-to-roll scale remain an engineering challenge, including precise regulation of printing pressures and the stamp-substrate interaction. This paper introduces a method for precise control of contact pressure that can accommodate large dimensional variations, i.e. varying stamp and substrate thicknesses. This control algorithm is implemented on a simply supported roll positioning stage. Experimental results for microcontact printing and microflexography are shown both with in situ contact measurements on a pseudo substrate and with 5 um silver nanoparticle prints. Ultimately, this approach enables robust printing despite sensitive stamp patterns and large dimensional variations (> 10 μm) in substrates, stamps, and roll equipment.