Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:19:03.258Z Has data issue: false hasContentIssue false

Sintering of Inkjet-printed Cu-nanoparticle Ink in Ambient Conditions Using a Continuous Wave 808 nm Diode Laser

Published online by Cambridge University Press:  28 February 2013

E. Halonen
Affiliation:
Tampere University of Technology, Department of Electronics, Korkeakoulunkatu 3, 33720, Tampere, Finland
S. Koskinen
Affiliation:
Tampere University of Technology, Department of Electronics, Korkeakoulunkatu 3, 33720, Tampere, Finland
I. Leino
Affiliation:
Tampere University of Technology, Department of Electronics, Korkeakoulunkatu 3, 33720, Tampere, Finland
P. Heljo
Affiliation:
Tampere University of Technology, Department of Electronics, Korkeakoulunkatu 3, 33720, Tampere, Finland
M. Mäntysalo
Affiliation:
Tampere University of Technology, Department of Electronics, Korkeakoulunkatu 3, 33720, Tampere, Finland
Get access

Abstract

In this paper, we focused on sintering of inkjet-printed copper nanoparticle ink structures using a continuous wave 808nm diode laser. Laser sintering in printed electronics is a rapid sintering method which enables localized sintering. Sintering of Cu inks is usually done in nitrogen atmosphere but the novelty of this study is that successful sintering of Cu ink was done under ambient conditions. The used ink consists of copper nanoparticles covered with a dispersion agent. Photonic sintering is needed to speed up the sintering process to prevent oxidation during sintering. Electrical and mechanical performance of the printed structures was analyzed. Resistivity of 10-12 μΩcm with good repeatability as well as excellent adhesion, were achieved.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hankey, D. L., et al. , Thick Film Materials and Processes, in Hybrid Microelectronics Handbook, edited by Sergent, J.E. and Harper, C.A. USA 1995, McGraw-Hill. 768p.Google Scholar
Niittynen, J., Kiilunen, J., Putaala, J., Pekkanen, V., Reliability of ICA Attachment of SMDs on Inkjet-Printed Substrates, Microelectronics Reliability, Vol. 52, Issue 11, 2012, pp. 27092715.CrossRefGoogle Scholar
Perelaer, J., Microstructures Prepared via Inkjet Printing and Embossing Techniques, Dissertation, Eindhoven University of Technology, 2009, 195 p.Google Scholar
Greer, J. R., Street, R. A., Thermal cure effects on electrical performance of nanoparticle silver inks, Acta Materialia, 2007, 55 (18), pp. 63456349.CrossRefGoogle Scholar
Volkman, S.K., Yin, S., Bakhishev, T., Puntambekar, K., Subramanian, V., Toney, M.F., Mechanistic studies on sintering of silver nanoparticles, Chemistry of Materials 23 (20), pp. 46344640.CrossRefGoogle Scholar
Alastalo, A.T., Seppä, H., Leppäniemi, J.H., Aronniemi, M.J., Allen, M.L., Mattila, T., Modelling of nanoparticle sintering under electrical boundary conditions, Journal of Physics D: Applied Physics, 43 (48), art. No. 485501CrossRefGoogle Scholar
Halonen, E., Viiru, T., Östman, K., Cabezas, A. L., Mäntysalo, M., Oven Sintering Process Optimization for Inkjet-Printed Ag Nanoparticle Ink, Transactions on Components, Packaging and Manufacturing Technology, 2012, Article in Press, Available online.Google Scholar
Kumpulainen, T., Pekkanen, J., Valkama, J., Laakso, J., Tuokko, R., & Mäntysalo, M. (2011). Low temperature nanoparticle sintering with continuous wave and pulse lasers. Optics and Laser Technology, 43(3), 570576.CrossRefGoogle Scholar
Kim, H.-S., Dhage, S.R., Shim, D.-E., Hahn, H.T., Intense pulsed light sintering of copper nanoink for printed electronics, Applied Physics A: Materials Science and Processing 97 (4), 2009, pp. 791798.CrossRefGoogle Scholar
Joo, M., Lee, B., Jeong, S., Lee, M., Laser Sintering of Cu Paste Film Printed on Polyimide Substrate, Applied Surface Science, 2011, 258 (1), pp. 521524.CrossRefGoogle Scholar
Joo, M., Lee, B., Jeong, S., Lee, M., Comparative Studies on Thermal and Laser Sintering for Highly Conductive Cu Films Printable on Plastic Substrate, Thin Solid Films, 2012, 520 (7), pp. 28782883.CrossRefGoogle Scholar
French, R. H., Rodriguez-Parada, J. M., Yang, M. K., Darryberry, R. A., Lemon, M. F., Brown, M. J., Haeger, C. R., Samuels, S. L., Romano, E. C., Richardson, E. E., DuPont: Optical Properties of Materials for Concentrator Photovoltaics, Available at: http://www2.dupont.com/Photovoltaics/en_US/assets/downloads/pdf/ConcentratorPV_Poster.pdf Google Scholar
ASTM Standard D3359-97. Standard Test Methods for Measuring Adhesion by Tape Test. ASTM International, West Conshohocken, PA, USA. 1997.Google Scholar
Halonen, E., Pynttäri, V., Lilja, J., Sillanpää, H., Mäntysalo, M., Heikkinen, J., Mäkinen, R., Kaija, T., Salonen, P., Environmental Protection of Inkjet-Printed Ag conductors, Microelectronic Engineering, Vol. 88, Issue 9, 2011, pp. 29702976.CrossRefGoogle Scholar