Published online by Cambridge University Press: 28 February 2013
Uniformly uni-axially aligned electrodes are formed by uniaxially cracking an indium tin oxide, ITO, film vacuum deposited on a polyester substrate. The cracks are produced by bending the film around a small radius of curvature, producing narrow, parallel cracks in the ITO separated by 5-10 μm. The cracks are enhanced by etching or uniaxial stretching. Heating and stretching is the most effective, producing a crack width of about 0.05 μm and a differential conductivity (measured parallel and perpendicular to the cracks) several orders of magnitude or greater. A passive matrix bistable cholesteric display is fabricated using top and bottom substrates with perpendicularly aligned electrodes. The addressed lines on each substrate are defined by the contact electrode, which contacts multiple cracked ITO lines. Because of the small dimension of the cracks (much less than the thickness of the active layer) they are not visible in the display. The separation between the contact electrodes must be great than 20 μm in order to include at least one crack and electrically isolate each individual line. The resulting display demonstrates how controlled cracking of ITO can replace photolithographic etching of ITO or printing of conducting polymers to produce the line electrodes required for flexible, passive matrix displays and related electronic applications. Un-axially cracking can be easily integrated into a roll-to-roll manufacturing process.