Synthesis and characterization of a new carbon particle are investigated in this study. The carbon particle, which possesses a very high surface area (682 cm2/g), is suitable for catalysts loading in application of fuel cell. As well known, carbon materials are used to be a support of Pt catalyst to achieve high dispersion to enhance the activity of Pt. The synthesis was performed by conventional arc discharge process between two graphite electrodes in vacuum. A high-current range from 100∼ 300 ampere was utilized to evaporate the cathode electrode in order to produce carbon soot onto the wall of chamber, and further high production rate of 10 g/hr was achieved. The morphology and microstructure of the materials were investigated by SEM, HRTEM, XRD and Raman spectroscopy.
Observations of the soot by SEM and HRTEM have shown that it consists agglomerations of carbon particles linked each other to form a chain-like structure. Most carbon particles are approximate 30 ∼ 60 nm in diameter. HRTEM observation reveals that a carbon particle is comprised of several defective onions with different diameters and extremely curled graphene sheets, which appear as double-sheet layers.