We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We consider the modality “
$\varphi $
is true in every
$\sigma $
-centered forcing extension,” denoted
$\square \varphi $
, and its dual “
$\varphi $
is true in some
$\sigma $
-centered forcing extension,” denoted
$\lozenge \varphi $
(where
$\varphi $
is a statement in set theory), which give rise to the notion of a principle of
$\sigma $
-centered forcing. We prove that if ZFC is consistent, then the modal logic of
$\sigma $
-centered forcing, i.e., the ZFC-provable principles of
$\sigma $
-centered forcing, is exactly
$\mathsf {S4.2}$
. We also generalize this result to other related classes of forcing.
We prove a number of elementary facts about computability in partial combinatory algebras (pca’s). We disprove a suggestion made by Kreisel about using Friedberg numberings to construct extensional pca’s. We then discuss separability and elements without total extensions. We relate this to Ershov’s notion of precompleteness, and we show that precomplete numberings are not 1–1 in general.
In [12], John Stillwell wrote, ‘finding the exact strength of the Brouwer invariance theorems seems to me one of the most interesting open problems in reverse mathematics.’ In this article, we solve Stillwell’s problem by showing that (some forms of) the Brouwer invariance theorems are equivalent to the weak König’s lemma over the base system
${\sf RCA}_0$
. In particular, there exists an explicit algorithm which, whenever the weak König’s lemma is false, constructs a topological embedding of
$\mathbb {R}^4$
into
$\mathbb {R}^3$
.
Inquisitive modal logic, InqML, is a generalisation of standard Kripke-style modal logic. In its epistemic incarnation, it extends standard epistemic logic to capture not just the information that agents have, but also the questions that they are interested in. Technically, InqML fits within the family of logics based on team semantics. From a model-theoretic perspective, it takes us a step in the direction of monadic second-order logic, as inquisitive modal operators involve quantification over sets of worlds. We introduce and investigate the natural notion of bisimulation equivalence in the setting of InqML. We compare the expressiveness of InqML and first-order logic in the context of relational structures with two sorts, one for worlds and one for information states, and characterise inquisitive modal logic as the bisimulation invariant fragment of first-order logic over various natural classes of two-sorted structures.
We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it generates a total version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of total realizers. From a logical perspective completion can be seen as a way to make problems independent of their premises. Alongside with the completion operator and total Weihrauch reducibility we need to study precomplete representations that are required to describe these concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also implies that the theory of our Brouwer algebra is Jankov logic.
Ramsey’s theorem asserts that every k-coloring of
$[\omega ]^n$
admits an infinite monochromatic set. Whenever
$n \geq 3$
, there exists a computable k-coloring of
$[\omega ]^n$
whose solutions compute the halting set. On the other hand, for every computable k-coloring of
$[\omega ]^2$
and every noncomputable set C, there is an infinite monochromatic set H such that
$C \not \leq _T H$
. The latter property is known as cone avoidance.
In this article, we design a natural class of Ramsey-like theorems encompassing many statements studied in reverse mathematics. We prove that this class admits a maximal statement satisfying cone avoidance and use it as a criterion to re-obtain many existing proofs of cone avoidance. This maximal statement asserts the existence, for every k-coloring of
$[\omega ]^n$
, of an infinite subdomain
$H \subseteq \omega $
over which the coloring depends only on the sparsity of its elements. This confirms the intuition that Ramsey-like theorems compute Turing degrees only through the sparsity of its solutions.
We determine the modal logic of fixed-point models of truth and their axiomatizations by Solomon Feferman via Solovay-style completeness results. Given a fixed-point model
$\mathcal {M}$
, or an axiomatization S thereof, we find a modal logic M such that a modal sentence
$\varphi $
is a theorem of M if and only if the sentence
$\varphi ^*$
obtained by translating the modal operator with the truth predicate is true in
$\mathcal {M}$
or a theorem of S under all such translations. To this end, we introduce a novel version of possible worlds semantics featuring both classical and nonclassical worlds and establish the completeness of a family of noncongruent modal logics whose internal logic is nonclassical with respect to this semantics.
We characterize Weihrauch reducibility in
$ \operatorname {\mathrm {E-PA^{\omega }}} + \operatorname {\mathrm {QF-AC^{0,0}}}$
and all systems containing it by the provability in a linear variant of the same calculus using modifications of Gödel’s Dialectica interpretation that incorporate ideas from linear logic, nonstandard arithmetic, higher-order computability, and phase semantics.
This paper explores the analysis of ability, where ability is to be understood in the epistemic sense—in contrast to what might be called a causal sense. There are plenty of cases where an agent is able to perform an action that guarantees a given result even though she does not know which of her actions guarantees that result. Such an agent possesses the causal ability but lacks the epistemic ability. The standard analysis of such epistemic abilities relies on the notion of action types—as opposed to action tokens—and then posits that an agent has the epistemic ability to do something if and only if there is an action type available to her that she knows guarantees it. We show that these action types are not needed: we present a formalism without action types that can simulate analyzes of epistemic ability that rely on action types. Our formalism is a standard epistemic extension of the theory of “seeing to it that”, which arose from a modal tradition in the logic of action.
This paper explores relational syllogistic logics, a family of logical systems related to reasoning about relations in extensions of the classical syllogistic. These are all decidable logical systems. We prove completeness theorems and complexity results for a natural subfamily of relational syllogistic logics, parametrized by constructors for terms and for sentences.
In this article, I provide Urquhart-style semilattice semantics for three connexive logics in an implication-negation language (I call these “pure theories of connexive implication”). The systems semantically characterized include the implication-negation fragment of a connexive logic of Wansing, a relevant connexive logic recently developed proof-theoretically by Francez, and an intermediate system that is novel to this article. Simple proofs of soundness and completeness are given and the semantics is used to establish various facts about the systems (e.g., that two of the systems have the variable sharing property). I emphasize the intuitive content of the semantics and discuss how natural informational considerations underly each of the examined systems.
Several authors have investigated the question of whether canonical logic-based accounts of belief revision, and especially the theory of AGM revision operators, are compatible with the dynamics of Bayesian conditioning. Here we show that Leitgeb’s stability rule for acceptance, which has been offered as a possible solution to the Lottery paradox, allows to bridge AGM revision and Bayesian update: using the stability rule, we prove that AGM revision operators emerge from Bayesian conditioning by an application of the principle of maximum entropy. In situations of information loss, or whenever the agent relies on a qualitative description of her information state—such as a plausibility ranking over hypotheses, or a belief set—the dynamics of AGM belief revision are compatible with Bayesian conditioning; indeed, through the maximum entropy principle, conditioning naturally generates AGM revision operators. This mitigates an impossibility theorem of Lin and Kelly for tracking Bayesian conditioning with AGM revision, and suggests an approach to the compatibility problem that highlights the information loss incurred by acceptance rules in passing from probabilistic to qualitative representations of belief.
We consider the structures
$(\mathbb {Z}; \mathrm {SF}^{\mathbb {Z}})$
,
$(\mathbb {Z}; <, \mathrm {SF}^{\mathbb {Z}})$
,
$(\mathbb {Q}; \mathrm {SF}^{\mathbb {Q}})$
, and
$(\mathbb {Q}; <, \mathrm {SF}^{\mathbb {Q}})$
where
$\mathbb {Z}$
is the additive group of integers,
$\mathrm {SF}^{\mathbb {Z}}$
is the set of
$a \in \mathbb {Z}$
such that
$v_{p}(a) < 2$
for every prime p and corresponding p-adic valuation
$v_{p}$
,
$\mathbb {Q}$
and
$\mathrm {SF}^{\mathbb {Q}}$
are defined likewise for rational numbers, and
$<$
denotes the natural ordering on each of these domains. We prove that the second structure is model-theoretically wild while the other three structures are model-theoretically tame. Moreover, all these results can be seen as examples where number-theoretic randomness yields model-theoretic consequences.
Rybakov (1984a) proved that the admissible rules of
$\mathsf {IPC}$
are decidable. We give a proof of the same theorem, using the same core idea, but couched in the many notions that have been developed in the mean time. In particular, we illustrate how the argument can be interpreted as using refinements of the notions of exactness and extendibility.
A problem is a multivalued function from a set of instances to a set of solutions. We consider only instances and solutions coded by sets of integers. A problem admits preservation of some computability-theoretic weakness property if every computable instance of the problem admits a solution relative to which the property holds. For example, cone avoidance is the ability, given a noncomputable set A and a computable instance of a problem
${\mathsf {P}}$
, to find a solution relative to which A is still noncomputable.
In this article, we compare relativized versions of computability-theoretic notions of preservation which have been studied in reverse mathematics, and prove that the ones which were not already separated by natural statements in the literature actually coincide. In particular, we prove that it is equivalent to admit avoidance of one cone, of
$\omega $
cones, of one hyperimmunity or of one non-
$\Sigma ^{0}_1$
definition. We also prove that the hierarchies of preservation of hyperimmunity and non-
$\Sigma ^{0}_1$
definitions coincide. On the other hand, none of these notions coincide in a nonrelativized setting.
Let
$\to $
be a continuous
$\protect \operatorname {\mathrm {[0,1]}}$
-valued function defined on the unit square
$\protect \operatorname {\mathrm {[0,1]}}^2$
, having the following properties: (i)
$x\to (y\to z)= y\to (x\to z)$
and (ii)
$x\to y=1 $
iff
$x\leq y$
. Let
$\neg x=x\to 0$
. Then the algebra
$W=(\protect \operatorname {\mathrm {[0,1]}},1,\neg ,\to )$
satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let
$x\to _{\text {\tiny \L }}y=\min (1,1-x+y)$
and
$\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$
Then there is precisely one isomorphism
$\phi $
of W onto the standard Wajsberg algebra
$W_{\text {\tiny \L }}= (\protect \operatorname {\mathrm {[0,1]}},1,\neg _{\text {\tiny \L }},\to _{\text {\tiny \L }})$
. Thus
$x\to y= \phi ^{-1}(\min (1,1-\phi (x)+\phi (y)))$
.
Using the category of metric spaces as a template, we develop a metric analogue of the categorical semantics of classical/intuitionistic logic, and show that the natural notion of predicate in this “continuous semantics” is equivalent to the a priori separate notion of predicate in continuous logic, a logic which is independently well-studied by model theorists and which finds various applications. We show this equivalence by exhibiting the real interval
$[0,1]$
in the category of metric spaces as a “continuous subobject classifier” giving a correspondence not only between the two notions of predicate, but also between the natural notion of quantification in the continuous semantics and the existing notion of quantification in continuous logic.
Along the way, we formulate what it means for a given category to behave like the category of metric spaces, and afterwards show that any such category supports the aforementioned continuous semantics. As an application, we show that categories of presheaves of metric spaces are examples of such, and in fact even possess continuous subobject classifiers.
Is a logicist bound to the claim that as a matter of analytic truth there is an actual infinity of objects? If Hume’s Principle is analytic then in the standard setting the answer appears to be yes. Hodes’s work pointed to a way out by offering a modal picture in which only a potential infinity was posited. However, this project was abandoned due to apparent failures of cross-world predication. We re-explore this idea and discover that in the setting of the potential infinite one can interpret first-order Peano arithmetic, but not second-order Peano arithmetic. We conclude that in order for the logicist to weaken the metaphysically loaded claim of necessary actual infinities, they must also weaken the mathematics they recover.
In this paper, we axiomatize the deontic logic in Fusco (2015), which uses a Stalnaker-inspired account of diagonal acceptance and a two-dimensional account of disjunction to treat Ross’s Paradox and the Puzzle of Free Choice Permission. On this account, disjunction-involving validities are a priori rather than necessary. We show how to axiomatize two-dimensional disjunction so that the introduction/elimination rules for boolean disjunction can be viewed as one-dimensional projections of more general two-dimensional rules. These completeness results help make explicit the restrictions Fusco’s account must place on free-choice inferences. They are also of independent interest, as they raise difficult questions about how to “lift” a Kripke frame for a one-dimensional modal logic into two dimensions.
The prevalent interpretation of Gödel’s Second Theorem states that a sufficiently adequate and consistent theory does not prove its consistency. It is however not entirely clear how to justify this informal reading, as the formulation of the underlying mathematical theorem depends on several arbitrary formalisation choices. In this paper I examine the theorem’s dependency regarding Gödel numberings. I introduce deviant numberings, yielding provability predicates satisfying Löb’s conditions, which result in provable consistency sentences. According to the main result of this paper however, these “counterexamples” do not refute the theorem’s prevalent interpretation, since once a natural class of admissible numberings is singled out, invariance is maintained.