Article contents
THE MODAL LOGIC OF $\sigma $-CENTERED FORCING AND RELATED FORCING CLASSES
Published online by Cambridge University Press: 03 December 2020
Abstract
We consider the modality “ $\varphi $ is true in every $\sigma $ -centered forcing extension,” denoted $\square \varphi $ , and its dual “ $\varphi $ is true in some $\sigma $ -centered forcing extension,” denoted $\lozenge \varphi $ (where $\varphi $ is a statement in set theory), which give rise to the notion of a principle of $\sigma $ -centered forcing. We prove that if ZFC is consistent, then the modal logic of $\sigma $ -centered forcing, i.e., the ZFC-provable principles of $\sigma $ -centered forcing, is exactly $\mathsf {S4.2}$ . We also generalize this result to other related classes of forcing.
MSC classification
- Type
- Article
- Information
- Copyright
- © The Association for Symbolic Logic 2020
References
REFERENCES
- 1
- Cited by