We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This paper proves the finite axiomatizability of transitive modal logics of finite depth and finite width w.r.t. proper-successor-equivalence. The frame condition of the latter requires, in a rooted transitive frame, a finite upper bound of cardinality for antichains of points with different sets of proper successors. The result generalizes Rybakov’s result of the finite axiomatizability of extensions of $\mathbf {S4}$ of finite depth and finite width.
In their logical analysis of theorems about disjoint rays in graphs, Barnes, Shore, and the author (hereafter BGS) introduced a weak choice scheme in second-order arithmetic, called the $\Sigma ^1_1$ axiom of finite choice (hereafter finite choice). This is a special case of the $\Sigma ^1_1$ axiom of choice ($\Sigma ^1_1\text {-}\mathsf {AC}_0$) introduced by Kreisel. BGS showed that $\Sigma ^1_1\text {-}\mathsf {AC}_0$ suffices for proving many of the aforementioned theorems in graph theory. While it is not known if these implications reverse, BGS also showed that those theorems imply finite choice (in some cases, with additional induction assumptions). This motivated us to study the proof-theoretic strength of finite choice. Using a variant of Steel forcing with tagged trees, we show that finite choice is not provable from the $\Delta ^1_1$-comprehension scheme (even over $\omega $-models). We also show that finite choice is a consequence of the arithmetic Bolzano–Weierstrass theorem (introduced by Friedman and studied by Conidis), assuming $\Sigma ^1_1$-induction. Our results were used by BGS to show that several theorems in graph theory cannot be proved using $\Delta ^1_1$-comprehension. Our results also strengthen results of Conidis.
It is widely thought that chance should be understood in reductionist terms: claims about chance should be understood as claims that certain patterns of events are instantiated. There are many possible reductionist theories of chance, differing as to which possible pattern of events they take to be chance-making. It is also widely taken to be a norm of rationality that credence should defer to chance: special cases aside, rationality requires that one’s credence function, when conditionalized on the chance-making facts, should coincide with the objective chance function. It is a shortcoming of a theory of chance if it implies that this norm of rationality is unsatisfiable. The primary goal of this paper is to show, on the basis of considerations concerning computability and inductive learning, that this shortcoming is more common than one would have hoped.
In this note we study a counterpart in predicate logic of the notion of logical friendliness, introduced into propositional logic in [15]. The result is a new consequence relation for predicate languages with equality using first-order models. While compactness, interpolation and axiomatizability fail dramatically, several other properties are preserved from the propositional case. Divergence is diminished when the language does not contain equality with its standard interpretation.
The paper investigates from a proof-theoretic perspective various non-contractive logical systems, which circumvent logical and semantic paradoxes. Until recently, such systems only displayed additive quantifiers (Grišin and Cantini). Systems with multiplicative quantifiers were proposed in the 2010s (Zardini), but they turned out to be inconsistent with the naive rules for truth or comprehension. We start by presenting a first-order system for disquotational truth with additive quantifiers and compare it with Grišin set theory. We then analyze the reasons behind the inconsistency phenomenon affecting multiplicative quantifiers. After interpreting the exponentials in affine logic as vacuous quantifiers, we show how such a logic can be simulated within a truth-free fragment of a system with multiplicative quantifiers. Finally, we establish that the logic for these multiplicative quantifiers (but without disquotational truth) is consistent, by proving that an infinitary version of the cut rule can be eliminated. This paves the way to a syntactic approach to the proof theory of infinitary logic with infinite sequents.
In this article we define a logical system called Hybrid Partial Type Theory ($\mathcal {HPTT}$). The system is obtained by combining William Farmer’s partial type theory with a strong form of hybrid logic. William Farmer’s system is a version of Church’s theory of types which allows terms to be non-denoting; hybrid logic is a version of modal logic in which it is possible to name worlds and evaluate expressions with respect to particular worlds. We motivate this combination of ideas in the introduction, and devote the rest of the article to defining, axiomatising, and proving a completeness result for $\mathcal {HPTT}$.
We show that the first-order logical theory of the binary overlap-free words (and, more generally, the $\alpha $-free words for rational $\alpha $, $2 < \alpha \leq 7/3$), is decidable. As a consequence, many results previously obtained about this class through tedious case-based proofs can now be proved “automatically,” using a decision procedure, and new claims can be proved or disproved simply by restating them as logical formulas.
Given a three-valued definition of validity, which choice of three-valued truth tables for the connectives can ensure that the resulting logic coincides exactly with classical logic? We give an answer to this question for the five monotonic consequence relations $st$, $ss$, $tt$, $ss\cap tt$, and $ts$, when the connectives are negation, conjunction, and disjunction. For $ts$ and $ss\cap tt$ the answer is trivial (no scheme works), and for $ss$ and $tt$ it is straightforward (they are the collapsible schemes, in which the middle value acts like one of the classical values). For $st$, the schemes in question are the Boolean normal schemes that are either monotonic or collapsible.
${\mathsf {CAC\ for\ trees}}$ is the statement asserting that any infinite subtree of $\mathbb {N}^{<\mathbb {N}}$ has an infinite path or an infinite antichain. In this paper, we study the computational strength of this theorem from a reverse mathematical viewpoint. We prove that ${\mathsf {CAC\ for\ trees}}$ is robust, that is, there exist several characterizations, some of which already appear in the literature, namely, the statement $\mathsf {SHER}$ introduced by Dorais et al. [8], and the statement $\mathsf {TAC}+\mathsf {B}\Sigma ^0_2$ where $\mathsf {TAC}$ is the tree antichain theorem introduced by Conidis [6]. We show that ${\mathsf {CAC\ for\ trees}}$ is computationally very weak, in that it admits probabilistic solutions.
We obtain, for the first time, a modular many-valued semantics for combined logics, which is built directly from many-valued semantics for the logics being combined, by means of suitable universal operations over partial non-deterministic logical matrices. Our constructions preserve finite-valuedness in the context of multiple-conclusion logics, whereas, unsurprisingly, it may be lost in the context of single-conclusion logics. Besides illustrating our constructions over a wide range of examples, we also develop concrete applications of our semantic characterizations, namely regarding the semantics of strengthening a given many-valued logic with additional axioms, the study of conditions under which a given logic may be seen as a combination of simpler syntactically defined fragments whose calculi can be obtained independently and put together to form a calculus for the whole logic, and also general conditions for decidability to be preserved by the combination mechanism.
We present a proof system for a multimode and multimodal logic, which is based on our previous work on modal Martin-Löf type theory. The specification of modes, modalities, and implications between them is given as a mode theory, i.e., a small 2-category. The logic is extended to a lambda calculus, establishing a Curry–Howard correspondence.
We develop a method for showing that various modal logics that are valid in their countably generated canonical Kripke frames must also be valid in their uncountably generated ones. This is applied to many systems, including the logics of finite width, and a broader class of multimodal logics of ‘finite achronal width’ that are introduced here.
Sedlár and Vigiani [18] have developed an approach to propositional epistemic logics wherein (i) an agent’s beliefs are closed under relevant implication and (ii) the agent is located in a classical possible world (i.e., the non-modal fragment is classical). Here I construct first-order extensions of these logics using the non-Tarskian interpretation of the quantifiers introduced by Mares and Goldblatt [12], and later extended to quantified modal relevant logics by Ferenz [6]. Modular soundness and completeness are proved for constant domain semantics, using non-general frames with Mares–Goldblatt truth conditions. I further detail the relation between the demand that classical possible worlds have Tarskian truth conditions and incompleteness results in quantified relevant logics.
In this paper, I develop an algorithmic impossible-worlds model of belief and knowledge that provides a middle ground between models that entail that everyone is logically omniscient and those that are compatible with even the most egregious kinds of logical incompetence. In outline, the model entails that an agent believes (knows) $\phi $ just in case she can easily (and correctly) compute that $\phi $ is true and thus has the capacity to make her actions depend on whether $\phi $. The model thereby captures the standard view that belief and knowledge ground are constitutively connected to dispositions to act. As I explain, the model improves upon standard algorithmic models developed by Parikh, Halpern, Moses, Vardi, and Duc, among other ways, by integrating them into an impossible-worlds framework. The model also avoids some important disadvantages of recent candidate middle-ground models based on dynamic epistemic logic or step logic, and it can subsume their most important advantages.
When classes of structures are not first-order definable, we might still try to find a nice description. There are two common ways for doing this. One is to expand the language, leading to notions of pseudo-elementary classes, and the other is to allow infinite conjuncts and disjuncts. In this paper we examine the intersection. Namely, we address the question: Which classes of structures are both pseudo-elementary and
${\mathcal {L}}_{\omega _1, \omega }$
-elementary? We find that these are exactly the classes that can be defined by an infinitary formula that has no infinitary disjunctions.
There exist two notions of equivalence of behavior between states of a Labelled Markov Process (LMP): state bisimilarity and event bisimilarity. The first one can be considered as an appropriate generalization to continuous spaces of Larsen and Skou’s probabilistic bisimilarity, whereas the second one is characterized by a natural logic. C. Zhou expressed state bisimilarity as the greatest fixed point of an operator $\mathcal {O}$, and thus introduced an ordinal measure of the discrepancy between it and event bisimilarity. We call this ordinal the Zhou ordinal of $\mathbb {S}$, $\mathfrak {Z}(\mathbb {S})$. When $\mathfrak {Z}(\mathbb {S})=0$, $\mathbb {S}$ satisfies the Hennessy–Milner property. The second author proved the existence of an LMP $\mathbb {S}$ with $\mathfrak {Z}(\mathbb {S}) \geq 1$ and Zhou showed that there are LMPs having an infinite Zhou ordinal. In this paper we show that there are LMPs $\mathbb {S}$ over separable metrizable spaces having arbitrary large countable $\mathfrak {Z}(\mathbb {S})$ and that it is consistent with the axioms of $\mathit {ZFC}$ that there is such a process with an uncountable Zhou ordinal.
Sahlqvist theory is extended to the fragments of the intuitionistic propositional calculus that include the conjunction connective. This allows us to introduce a Sahlqvist theory of intuitionistic character amenable to arbitrary protoalgebraic deductive systems. As an application, we obtain a Sahlqvist theorem for the fragments of the intuitionistic propositional calculus that include the implication connective and for the extensions of the intuitionistic linear logic.
Lindström’s theorem obviously fails as a characterization of first-order logic without identity ($\mathcal {L}_{\omega \omega }^{-} $). In this note, we provide a fix: we show that $\mathcal {L}_{\omega \omega }^{-} $ is a maximal abstract logic satisfying a weak form of the isomorphism property (suitable for identity-free languages and studied in [11]), the Löwenheim–Skolem property, and compactness. Furthermore, we show that compactness can be replaced by being recursively enumerable for validity under certain conditions. In the proofs, we use a form of strong upwards Löwenheim–Skolem theorem not available in the framework with identity.
We analyze the axiomatic strength of the following theorem due to Rival and Sands [28] in the style of reverse mathematics. Every infinite partial order P of finite width contains an infinite chain C such that every element of P is either comparable with no element of C or with infinitely many elements of C. Our main results are the following. The Rival–Sands theorem for infinite partial orders of arbitrary finite width is equivalent to $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$ over $\mathsf {RCA}_0$. For each fixed $k \geq 3$, the Rival–Sands theorem for infinite partial orders of width $\leq \!k$ is equivalent to $\mathsf {ADS}$ over $\mathsf {RCA}_0$. The Rival–Sands theorem for infinite partial orders that are decomposable into the union of two chains is equivalent to $\mathsf {SADS}$ over $\mathsf {RCA}_0$. Here $\mathsf {RCA}_0$ denotes the recursive comprehension axiomatic system, $\mathsf {I}\Sigma ^0_{2}$ denotes the $\Sigma ^0_2$ induction scheme, $\mathsf {ADS}$ denotes the ascending/descending sequence principle, and $\mathsf {SADS}$ denotes the stable ascending/descending sequence principle. To the best of our knowledge, these versions of the Rival–Sands theorem for partial orders are the first examples of theorems from the general mathematics literature whose strength is exactly characterized by $\mathsf {I}\Sigma ^0_{2} + \mathsf {ADS}$, by $\mathsf {ADS}$, and by $\mathsf {SADS}$. Furthermore, we give a new purely combinatorial result by extending the Rival–Sands theorem to infinite partial orders that do not have infinite antichains, and we show that this extension is equivalent to arithmetical comprehension over $\mathsf {RCA}_0$.
We systematically study several versions of the disjunction and the existence properties in modal arithmetic. First, we newly introduce three classes $\mathrm {B}$, $\Delta (\mathrm {B})$, and $\Sigma (\mathrm {B})$ of formulas of modal arithmetic and study basic properties of them. Then, we prove several implications between the properties. In particular, among other things, we prove that for any consistent recursively enumerable extension T of $\mathbf {PA}(\mathbf {K})$ with $T \nvdash \Box \bot $, the $\Sigma (\mathrm {B})$-disjunction property, the $\Sigma (\mathrm {B})$-existence property, and the $\mathrm {B}$-existence property are pairwise equivalent. Moreover, we introduce the notion of the $\Sigma (\mathrm {B})$-soundness of theories and prove that for any consistent recursively enumerable extension of $\mathbf {PA}(\mathbf {K4})$, the modal disjunction property is equivalent to the $\Sigma (\mathrm {B})$-soundness.