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Abstract. It is widely thought that chance should be understood in reductionist terms: claims
about chance should be understood as claims that certain patterns of events are instantiated.
There are many possible reductionist theories of chance, differing as to which possible pattern
of events they take to be chance-making. It is also widely taken to be a norm of rationality
that credence should defer to chance: special cases aside, rationality requires that one’s credence
function, when conditionalized on the chance-making facts, should coincide with the objective
chance function. It is a shortcoming of a theory of chance if it implies that this norm of rationality
is unsatisfiable. The primary goal of this paper is to show, on the basis of considerations
concerning computability and inductive learning, that this shortcoming is more common than
one would have hoped.

§1. Introduction. This paper is concerned with the rational relation between
credence (degrees of belief) and chance (objective probability) and with reductionist
theories of chance (according to which facts about chance supervene on non-chance-y
facts). There is, of course, already a large and flourishing literature on these topics. Its
dual centrepieces are: Lewis’s Best System account of chance, on which laws of chance
are scientifically ideal summaries of patterns of events; and his Principal Principle,
which says that the degrees of belief of rational agents must defer, in a certain sense,
to facts about chance.1 In giving us a relation between chance and rational credence,
the Principal Principle gives us interesting constraints on both relata: Lewis thought
of the Principal Principle as telling us something about what it means to be rational
and at the same time as encapsulating important truths about the concept of chance.2

Relative to a theory of chance, the Principal Principle picks out those prior credence
functions that are rationally permitted. At the same time it gives us possible grounds
for criticizing theories of chance. I suggest the following example: if we are thinking
of theories of chance as something like summaries meant to be used by beings like us,
there is something pathological about a theory of chance relative to which no priors
count as rationally permitted.

Here I aim to make a contribution that is orthogonal to the directions pursued
in most of the literature, making elementary use of some tools from the theory of
computation and from the theory of inductive learning to clarify questions about
which theories of chance are pathological in the sense just mentioned. It will emerge
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below that it is much more difficult than one might expect to find reductionist theories
of chance that do not face difficulties of this sort.

Very roughly speaking: on Lewis’s Best System account, the chance laws at a world
are just good scientific summaries of the patterns of events at that world; and his
Principal Principle says that if you are rational, then to the extent that you are confident
in a chance hypothesis it should guide your estimates of probability. So, taken together,
the package seems to imply that in order to be rational, you need to be a certain sort of
universal learner: whatever the chance laws at your world are, if you are a good scientist
and you see enough data, you should become confident in something like those laws
and so you should eventually mimic those laws in your estimates of probability. But in
many contexts we know that there can be no universal learner.3

Almost all of the discussion below will take place in the special setting in which
possible worlds can be modelled by infinite binary sequences (simple enough to be
tractable, complex enough to provide a picture of inquiry in which typical questions
are never definitively settled by a finite number of observations). The framework we
will be using is introduced in Sections 1.1–1.3.

Section 2 is concerned with reductionist theories of chance. For present purposes,
such a theory of chance for a given space of possible worlds is a map (satisfying certain
mild technical conditions) that assigns to (some) worlds of that space a probability
measure on that space—for a world assigned such a probability measure, the measure
plays the familiar role of chance laws (telling us the chance for various events to happen,
unconditionally or conditionally on other events having happened). This section also
introduces five very simple paradigm examples of reductionist theories of chance for
our chosen set of worlds. These will be used throughout as illustrations.

Section 3 is concerned with a weak version of the Principal Principle, the Chance–
Credence Principle (CCP). We will see that it is straightforward to characterize the
priors that satisfy CCP with respect to any given theory of chance—and that some of
our paradigm examples do not admit any priors that satisfy this principle.

There would be something unsatisfactory about an account of rationality that
required rational agents to be able to perform some absolutely impossible task—
squaring the circle, say. In the same way, if we are interested in the rationality of finite
agents—e.g., human beings and the machines that they build—then there is something
unsatisfactory about any account of rationality that requires agents to be able to
perform tasks that are impossible for finite agents—solving the Halting Problem, say.4

We will see in Section 4 that each of our paradigm examples of theories of chance is
unsatisfactory in this way. So there is a challenge here for those attracted to reductionist
theories of chance and to the Principal Principle: to develop and to defend examples
of reductionist theories of chance that are CCP-satisfiable by computable priors (or
to explain how norms of rationality can require agents to perform tasks that are
impossible for computable agents).

Motivated in part by the picture sketched above of the relationship between the
Lewisian package (Best System account of chance + the Principal Principle) and
learning, Section 5 considers weaker analogs of CCP (and versions of them that
require priors to be computable). The upshot is that if CCP is replaced by a weak
enough principle along these lines, then some more reductionist theories of chance are

3 For early results of this kind, see [54, 55]. For elaborations, see [36, 41].
4 For a dissenting perspective, see [19, sec. 9.8].
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consistent with Bayesian rationality. But many obstacles remain: for those interested
in the combination of a reductionist theory of chance and a Principal Principle-style
account of the relation between chance and credence there is interesting work to be
done.

Appendix A consists of some remarks concerning the relation between the Principal
Principle, some of its principal rivals, and CCP. Appendix B plays some Whac-A-Mole
against the complaint that at various points, my discussion shows that I am being
stiff-necked, closed-minded, naive, or unimaginative in my handling of conditional
probabilities and null sets.

Ground-rules: all probability measures are real-valued and countably additive; the
Axiom of Choice is taken for granted; and, for the most part, the notational conventions
of [18] are followed. Non-reductionist theories of chance are neglected throughout—
not because they are somehow immune from the problems encountered below, but
because their treatment would require an extension of the present framework.

1.1. Main characters.

a. The set of bits, 2 := {0, 1} (note the sans serif font—2 denotes a set, 2 a number).
b. For each n ∈ N, 2n is the set of n-bit strings (we include the case of the empty

string of zero bits).
c. The set of all binary strings: 2<� :=

⋃∞
n=0 2

n. If � and � are binary strings we
write �� for the string that results from concatenating � and � (in that order). We
call a binary string evenly split if it contains the same number of 0’s as it does 1’s.

d. Cantor space: the set 2� of all infinite binary sequences.5 For S ∈ 2�, we write
S(k) for the kth bit of S and S�k for the string formed by concatenating the first
k bits of S.We call a binary sequence evenly split if the limiting relative frequency
of 0’s in it is .5.

e. For any binary string �, we denote by [[�]] the set of S ∈ 2� whose initial bits
are given by �. We call the [[�]] basic subsets of 2�.6 We use B to denote the
�-algebra of subsets of 2� generated by the family of basic sets: B is the smallest
family of subsets of 2� that includes all the basic sets and which is closed under
taking complements, countable unions, and countable intersections. We call the
members of B the Borel subsets of 2�.7

f. The space P of Borel probability measures on 2� : each � ∈ P is a map
from B to [0, 1] such that: (a) �(2�) = 1; and (b) � is countably additive
(i.e., �(

⋃
Uk) =

∑
�(Uk), for any countable family U1, U2, ... of pairwise

disjoint Borel sets). We call a map m from the family of basic sets to [0, 1]
a probability function if: (i) m(2�) = 1; and (ii) for any binary string �,

5 By sequence we always mean one-way infinite sequence indexed by the positive natural numbers.
6 It is often convenient to take 2� to be equipped with the topology generated by the basic

sets—this coincides with the product topology (induced by thinking of 2� as a product of a
countable number of copies of 2, each equipped with the discrete topology). In this topology,
each basic set is compact as well as open: 2� itself is compact (being the product of compact
spaces); and each basic set is closed (if � is a k-bit string, then the complement of [[�]] is
open, being the union of the basic sets determined by the k-bit strings other than �).

7 Note that since there are only countably many basic sets, each open set of the product
topology (see footnote 6) is in B—so B is the �-algebra generated by this topology.
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m([[�]]) = m([[�0]]) +m([[�1]]).8 Any Borel probability measure determines via
restriction a probability function. And the restriction in fact determines the
probability measure: probability measures that agree on all basic sets agree on
all Borel sets.9 Further, every probability function can be extended to a Borel
probability measure.10

Example 1.1 (Delta-functions). For any S ∈ 2�, the delta-function concentrated on
S is the Borel probability measure �S that for any binary string �, assigns the basic set
[[�]] probability one if S begins with �, and otherwise assigns it probability zero.

Example 1.2 (Bernoulli measures). For any r ∈ (0, 1), the Bernoulli measure with
parameter r is the Borel probability measure �r such that for any binary string �, �r([[�]]) =
rk(1 – r)� , where k is the number of 0’s in � and � is the number of 1’s in �. So according
to �r, bits are selected by independent tosses of a coin with bias r in favour of 0’s. We call
�.5 the fair coin measure.

Example 1.3 (Hybrids). At various points it will be helpful to have recourse to
measures that initially behave like delta-functions before switching to the behaviour of the
fair coin measure. For any binary string � we define the measure ��.5 as follows: ��.5([[�]])
is 1 if � is an initial segment of �, is 1/2k if � is a k-bit extension of �, and is 0 otherwise.

Since there is a natural bijection between binary strings and the basic sets that they
determine, when we are focusing on the action of probability measures on basic sets
we will often simplify notation by writing �(�) for �([[�]]) etc. Similarly, if b is a bit,
and � is a binary string, the expression �(b | �) stands for �([[�b]] | [[�]]), the probability
that � gives for the next bit to be b, conditional on the sequence beginning with the
bits of �.

1.2. Computable numbers and measures. A binary sequence S ∈ 2� is computable
if there is a Turing machine that on input of a natural number k gives as output the
first k bits of S.

We say that a binary string � = b1b2 ... bn is a k-bit approximation to a number x in
the unit interval if ∣∣∣∣∣∣x –

n∑
j=1

bj
2j

∣∣∣∣∣∣ ≤
1
2k
.

A real number x in the unit interval is computable if there is a Turing machine that on
input of a natural number k gives as output a k-bit approximation to x.

So, intuitively, a real number (or a sequence) is computable if and only if it can
be computably approximated in a controlled way. Similarly, a real-valued function

8 An argument by induction shows that for any k > 1, any probability function satisfies a
generalized form of condition (ii), with the sum ranging over all k-bit extensions of �. From
this it follows that any probability function is finitely additive as a function on basic sets. And
in this case finite additivity implies countable (sub)additivity: recall from footnote 6 that in
the product topology each basic set is both open and compact—so if a basic set arises as the
union of a countable family of basic sets, then it also arises as the union of a finite subfamily.

9 See, e.g., [43, lemma 1.42].
10 This follows via the Carathéodory Extension Theorem (since the family of empty-or-basic

subsets of 2� is a semi-ring and the extension of m to this family, via the stipulationm(∅) = 0,
is finitely additive and countably subadditive). See, e.g., [43, theorem 1.53].
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on a computably enumerable set is computable if there is a single machine that can
approximate its value on any argument in a controlled way (this is stronger than
just requiring that each of its values be computable). Specializing this to the case of
probability measures—which, as we have seen, are determined by their restrictions to
the basic subsets of 2�—it is natural to define a Borel probability measure � on 2� to
be computable if there is a Turing machine that on input of a binary string � and a
natural number k gives as output a k-bit approximation to �([[�]]).

Note that a delta-function measure �S is computable if and only if the sequence S
that it is concentrated on is and that a Bernoulli measure �r is computable if and only
if its parameter r is. Note, further, that since there are only countably many Turing
machines, there can be only countably many computable sequences, computable real
numbers, and computable probability measures.

1.3. Worlds and priors. We are going to use binary sequences to model certain
simple possible worlds: time at these worlds is discrete, has a first instant, and is
infinite towards the future; the state of one of these worlds at a time is encodable by a
single bit. These worlds are too simple to be realistic, but allow us to study problems
about credence and chance in a controlled setting (and of course they provide models
of subsystems of more complex worlds).

We are going to work in a Bayesian framework in which agents satisfy three
conditions.

Probabilism: Each agent begins life in a credal state encoded in a probability measure
� (the agent’s prior), defined over some salient set of possible worlds.
Evidential Regularity: Each agent’s prior must assign non-zero weight to any
possible evidence E that the agent might acquire.
Conditionalization: The credal state of an agent with prior � and total evidence E is
encoded by �(· |E).

In our setting, the natural explication of possible state of evidence is: a finite initial
segment of a world. So we will call a probability measure � ∈ P a prior if it satisfies
�(�) > 0 for every binary string �.

§2. Chance. Our focus here is on reductionist theories of chance. The spirit behind
these (broadly Humean) approaches can be summarized as follows:

Philosophers are deeply divided on the status of modal truths in
general and nomic truths in particular—truths related to physical pos-
sibility and necessity. Besides chance, prominent nomic phenomena
include causation, counterfactuals, dispositions, and laws of nature.
One approach to the nomic, going back to Hume and further to the
medieval nominalists, holds that nomic facts about what could or
would or must are always reducible to facts about what is. For the
most part, Humeans do not deny the reality of nomic phenomena;
they agree that there are laws of nature, chances, dispositions, etc.
But they maintain that these things are derivative, determined by
more fundamental, non-modal elements of reality. Thus Humeans
might identify laws of nature with regularities in the history of
physical events, and chances with relative frequencies. This ensures
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that whenever two possible worlds agree in non-nomic aspects, they
also agree with respect to laws and chance.11

So what is a Humean reductionist theory of chance? The core idea is
that: the chance facts are reducible to certain facts about patterns
to be found in the whole panoply of events that happen in the
history of our universe. What kinds of patterns? Broadly speaking,
and unsurprisingly, they are stable and stochastic-looking or random-
looking patterns.12

In our setting, a complete history of a world is a binary sequence—a good candidate
for an object that can be described in non-modal terms but which might or might
not exhibit the sorts of patterns that could ground talk about chance. A probability
measure � on 2� can be thought of in the following terms: �(0) gives a probability for
the initial state of the world to be 0 and �(1) gives the probability for it to be 1; and
given any binary string �, �(0 | �) and �(1 | �) give the probability for the next bit to be
0 or 1, if � gives the history so far. So we can picture � as a book of instructions that
tells Nature how to construct worlds: first, flip a coin of such and such bias to generate
the first state; at any later time, flip a coin of this bias to generate the next state, if the
history so far is that. More generally, for any (Borel) subset A of 2�, and any binary
string �, �(A | �) gives the probability for A to obtain, given that � encodes an initial
segment of the history of the world.13

So in our setting, a reductionist theory of chance is an assignment of probability
measures to (some) worlds. It is convenient to build a couple of weak technical
conditions into the official definition.

Definition 2.1. A theory of chance is a (possibly merely partially defined ) map L :
2� → P such that for any 	 in the image of L we have (i) that L–1(	) is a Borel subset of
2� and (ii) that 	(L–1(	)) > 0.

Interpretation: if L is a theory of chance and L(S) = 	 for some S ∈ 2� and 	 ∈ P ,
then we think of L as saying that 	 encodes the facts about chance at S. We refer to
any 	 ∈ P in the image of L as a law of chance of L (or a chance law of L). If 	 is a
law of chance of L, then we refer to the proposition (= set of worlds) Λ := L–1(	) as
the chance hypothesis determined by 	. If, on the other hand, L(S) is undefined, then
L says that there are no facts about chance at S.We will refer to the set of worlds Λ∗
at which L is undefined as the proposition that the world is lawless (it is the negation
of the disjunction of all the chance hypotheses of the theory).

Clause (i) in Definition 2.1 requires that chance hypotheses be the sort of things
that probabilities can be assigned to.14 Clause (ii) rules out a certain sort of aberrant
behaviour: a law of chance that says that there is zero chance that it is the law of
chance.15

11 See [60, p. 425].
12 See [31, p. 2].
13 So such a measure encodes the complete set of what Lewis [45, p. 97] calls “history to chance

conditionals,” and hence gives what he calls “the complete theory of chance” for a world.
14 This is a weak measurability requirement. We will consider a stronger one in Appendix B.4.
15 This clause will be invoked below only in Section 5.1 and in Appendix A.2.
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In practice, we are most interested in theories of chance inspired by the heuristic
considerations that underlie various classic philosophical programs for understanding
chance reductively. Most prominent among these are: frequentist approaches, in which
the chance of any event type is identified with the relative frequency with which that type
of event occurs in some relevant reference class of events; and Best System approaches
in which the facts about chance at a world are provided by the (in general stochastic)
hypothesis that provides the best summary of facts at that world, according to ordinary
scientific standards (very roughly speaking—the best hypothesis is the one that in some
relevant sense ideally balances simplicity, logical strength, and fit with the data).16 It
will be helpful below to also have in mind a third (not especially popular) approach,
super-determinism, on which the only laws of chance are deterministic (i.e., are encoded
in delta-functions).

Consider the fair coin measure, �.5, on 2�.What does it mean to think of it as the
law of chance at a world S ∈ 2�? Well, for starters, �.5 tells you that the probability of
0 occurring at any time is .5—and that this probability is independent of what happens
at other times. In order to be acceptable to frequentists, a theory of chance must assign
the fair coin measure to all and only worlds that are evenly split between 0’s and 1’s.
Advocates of the Best System approach may recognize some exceptions to this rule:
perhaps (in the setting of finite worlds) it sometimes makes sense to take the fair coin
measure to give the law of chance at a world at which the relative frequency of 0’s
is given by a number r that is close to .5, when r itself is sufficiently far from being
simple.17 And perhaps some evenly split sequences should be assigned a law of chance
other than the fair coin measure—e.g., one might well want to assign a particularly
simple S ∈ 2� the delta-function measure �S concentrated on S as its law of chance,
whether or not S is evenly split.18

It will be helpful to have in mind a few theories of chance that can be thought of as
very simple-minded implementations of super-determinism, frequentism, and the Best
System approach.

Example 2.2 (Super-Determinism). Each S ∈ 2� is assigned as its chance law �S, the
delta-function measure concentrated on S.

Example 2.3 (Computable Super-Determinism). Each computable S ∈ 2� is
assigned �S as its chance law. All other worlds are lawless.

Example 2.4 (Basic Frequentism). If 0’s have relative frequency r in S ∈ 2�, then the
law of chance for S is the Bernoulli measure �r. If this relative frequency is not defined, S
is lawless.

Example 2.5 (Computable Frequentism). If 0’s have relative frequency r in S ∈ 2�

and r is computable, then the law of chance for S is the Bernoulli measure �r. If the relative
frequency of 0’s in S is uncomputable or undefined, then S is lawless.

There may seem to be little reason to opt for Computable Frequentism over Basic
Frequentism: it doesn’t seem to follow from the thought that probabilities are relative

16 Schwarz [60, p. 424] again provides a helpful encapsulation: “chances are identified with
probabilities in ideal physical theories whose aim is to provide a kind of summary statistic of
actual outcomes; getting close to the frequencies is one virtue of probabilistic theories, but
it trades off against other virtues such as comprehensiveness and simplicity.”

17 For this suggestion, see [46, sec. 4].
18 On this point, see again [46, sec. 4].
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frequencies that those frequencies must be given by computable numbers. But a
restriction to computable chance laws is entirely natural on the Best System approach.
If we are thinking of candidate chance laws for a world as something like putative
scientific summaries of that world, with the actual chance law (if there is one) being
the optimal such summary (as judged by ordinary scientific standards), then it would
appear to be essential that candidate chance laws be finitarily specifiable. After all,
what would it mean to compare the overall virtues of two infinite texts by the ordinary
standards of scientific—or literary—criticism? To directly specify a binary sequence
(or, equivalently, a real number in the unit interval) would be to specify the bits
that make it up, one by one: an infinitary task. Turing launched modern theoretical
computer science with the assertion that “The ‘computable’ numbers may be described
briefly as the real numbers whose expressions as a decimal are calculable by finite
means.”19 Turing’s proposal is that the finitarily specifiable real numbers are the Turing-
computable real numbers. A probability measure on 2� can be thought of as a certain
sort of real-valued function on the countably infinite space of finite binary strings.
Direct specification of such an object would be a doubly infinitary task, involving the
specification of an infinite number of real numbers. But some such objects are finitarily
specifiable: the Turing-computable measures (and the success of the Church–Turing
thesis gives us reason to think that these are all of the finitarily specifiable such objects).
So it is natural for those interested in Best System approaches to restrict their attention
to theories in which all chance laws are computable.20

Example 2.6 (A Toy Best System Theory). Any computable S ∈ 2� is assigned
the delta-function measure concentrated on S. Any incomputable S in which 0’s have
computable relative frequency r is assigned the Bernoulli measure �r. All other S are
lawless.

Remark 2.7. In a more plausible implementation of the best-system approach, it would
be natural to further require that any sequence assigned a given computable probability
measure as its law of chance must be algorithmically random relative to that measure.21 It
would also be natural to include further families of laws of chance: generalized Bernoulli
measures ( for which the bias of the coin used to determine the nth bit is allowed to depend
on n); Markov chains ( for which the bias of the coin used to determine the state at a time
depends on the states at some fixed number of immediately preceding times); and so on.

Definition 2.8 (Proper and Improper Theories). Let L be a theory of chance. We call
a law of chance 	 of L with chance hypothesis Λ proper if 	(Λ) = 1, otherwise we call
	 improper. We call L proper if all of its laws of chance are proper; otherwise we call L
improper.

Remark 2.9. Each of the theories of chance mentioned above is proper. This follows
from three facts. (a) Each delta-function �S assigns measure one to {S}. (b) Each
Bernoulli measure �r assigns measure one to the set of sequences in which 0’s have relative
frequency r (the strong law of large numbers). (c) Each Bernoulli measure �r assigns
measure zero to each countable set.

19 This is the opening sentence of [62].
20 So here I am denying that numbers that can in a sense be defined but which cannot be

computably approximated in a controlled way can play any role in science—maybe that is a
mistake. For the most famous examples of such numbers, see, e.g., [4].

21 See [11] for further discussion of this point.
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Example 2.10 (An Improper Theory of Chance). As in Example 1.3, let �0
.5 be the

probability measure that is certain that the first bit will be 0 but thinks that all subsequent
bits are sampled by tossing a fair coin. Consider the theory of chance that assigns the fair
coin measure to all sequences that begin with 1 and assigns �0

.5 all sequences that begin
with 0. In this theory �0

.5 is a proper chance law but the fair coin measure in an improper
one.

§3. Chance and credence. It has seemed to many that rationality requires there to
be a certain sort of relation between chance and credence—that in certain situations,
if you are rational, then your credence in an event must coincide with the chance of
that event.

Knowing only that the chance of drawing a red ball from an urn is
0.95, everyone agrees, in accordance with the law of likelihood, that a
guess of ‘red’ about some trial is much better supported than one of
‘not-red.’ But nearly everyone will go further, and agree that 0.95 is a
good measure of the degree to which ‘red’ is supported by the limited
data.22

[T]he chancemaking pattern in the arrangement of qualities must be
something that would, if known, correspondingly constrain rational
credence. Whatever makes it true that the chance of decay is 50% must
also, if known, make it rational to believe to degree 50% that decay
will occur.23

I will codify the constraint on priors suggested as follows.

Definition 3.1 (CCP). Let L be a theory of chance. We say that a prior � satisfies
the Chance–Credence Principle (CCP) for L if: for any chance law 	 of L with chance
hypothesis Λ and for any Borel subset A of 2� we have

�(A |Λ) = 	(A).

If there exists such a prior, we say that L is CCP-satisfiable; otherwise we say that it is
CCP-unsatisfiable.

Remark 3.2 (Nomenclature). The name Miller’s Principle is often given to principles
in this neighbourhood.24 With more justice (and less snark) it might perhaps be called
Hacking’s Principle, in light of Hacking’s somewhat earlier enunciation of a principle
of this kind.25 But, really, it seems hopeless to try to identify the originator of an idea
like this: as Hacking notes in introducing his version of the principle, it “seems to be so
universally accepted that it is hardly ever stated.”26

22 See [27, p. 136].
23 See [46, p. 478].
24 Because Miller [49] argued that a principle along these lines leads to contradiction.
25 See [27, esp. pp. 135 ff. and 193].
26 See [27, p. 135]. Hacking himself offers a reading on which Bayes was at least implicitly

committed to something like it—and also warns that although “many people readily grant
[this principle], it is by no means certainly correct” (p. 193).
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CCP can be thought of as a weak form of the Principal Principle (see Appendix A).
What does CCP require?

Definition 3.3. Let � be a prior and let 	 be a law of chance of a theory of chanceL.We
say that � contains 	 as a nugget of truth if we can write � = � + c · 	 with c > 0 and �
a (possibly trivial ) measure that considers the chance hypothesis Λ of 	 a null set.27

Proposition 3.4. Let L be a theory of chance and let � be a prior on 2�. Then �
satisfies CCP for L if and only if L has a countable number of chance laws, each of which
is proper and contained in � as a nugget of truth.

Proof. Suppose, first, that the chance laws of L are 	1, 	2, ... (with chance hypotheses
Λ1, Λ2, ...), that each 	k is proper, and that � = � +

∑
ck · 	k with each ck > 0 and �

a measure that considers each Λk a null set. We show that � satisfies CCP for L. Fix
j = 1, 2, 3, ... and a Borel set A.We have

�(A |Λj) =
�(A& Λj)
�(Λj)

=
�(A& Λj) +

∑
ck · 	k(A& Λj)

�(Λj) +
∑
ck · 	k(Λj)

=
cj · 	j(A& Λj)
cj · 	j(Λj)

= 	j(A),

where the first equality holds by definition; the second follows from the expansion for
� given above; the third follows from the fact that � and the 	k other than 	j assign
measure zero to Λj ; and the fourth follows via the propriety of 	j.

Suppose, on the other hand, that � satisfies CCP for L. Let 	 be one of the chance
laws of L and let Λ be the corresponding chance hypothesis.

(a) From the fact that CCP is satisfied, it follows in particular that the conditional
probability �(A |Λ) must be well-defined. So �(Λ) > 0. Since 	 was arbitrary, the
corresponding fact must hold for each chance law of L. Since the chance hypotheses
corresponding to distinct chance laws must be disjoint, this means that L must have
only countably many laws of chance.
(b) CCP tells us that a certain condition holds for all Borel sets A—so in particular, it
holds when we set A to Λ. So L is proper:

	(Λ) = �(Λ |Λ)

= 1.

(c) Finally, let Λc be the complement of Λ in 2�. Then �|Λ and �|Λc are measures on
2� and � = �|Λ + �|Λc . Now, CCP says that for any measurable A,

27 That is, � admits an orthogonal decomposition in which 	 appears with positive weight.
Compared with the notion of a grain of truth of Kalai and Lehrer [37]: specialized to our
setting, this requires that � = � + c · 	 without requiring that �(Λ) = 0.
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	(A) = �(A |Λ)

=
�(A& Λ)
�(Λ)

=
1
�(Λ)

�|Λ(A).

So � = �|Λc + c · 	, where c := �(Λ) > 0: � contains 	 as a nugget of truth.

Corollary 3.5. Let L be a proper theory of chance with countably many chance laws
	1, 	2, ... (with chance hypotheses Λ1, Λ2, ...). A prior � satisfies CCP for L if and only
if it can be written in the form

� = � +
∑
ck · 	k,

with each ck > 0 and � a (possibly trivial ) measure on 2� such that �(Λk) = 0 for each k.

Corollary 3.6. A theory of chance is CCP-satisfiable if and only if it is proper and
has only countably many laws of chance.

Proof. The left to right implication follows immediately from the preceding
proposition. For the other half, let L be a proper theory of chance with chance laws
	1, 	2, .... It suffices to show the existence of a prior � that contains each of the 	k as a
nugget of truth.

Let �0 =
∑ 1

2k
	k. Let M := {� ∈ 2<� |�0([[�]]) = 0}. If M is empty, then �0 is a

prior and we can take � = �0. Otherwise, enumerate M as �1, �2, ... (M is countable,
being a subset of 2<�, and is infinite, since any extension of a string in M is in M).
Then, recalling the notation of Example 1.3, �1 :=

∑ 1
2k
�
�k
.5 is a probability measure

concentrated on the L-lawless sequences. So we can take � = 1
2�0 + 1

2�1.

Of our examples of theories of chance from Section 2, Super-Determinism and
Basic Frequentism are not CCP-satisfiable (they have too many chance laws), but
Computable Super-Determinism, Computable Frequentism, and the Toy Best System
account are.28

§4. Chance, credence, and computability. As noted above, fans of the Principal
Principle like to present it as Janus-faced, both giving us substantive information
about the nature of chance and giving us a substantive constraint on rational Bayesian
priors. From this perspective, something has gone wrong if we find no computable
prior satisfies CCP for a certain reductionist theory of chance: the theory of chance
should be discarded; we need to replace CCP with some weaker condition relating
credence and chance; or we need to provide an account of the normative force of a
putative requirement of rationality that requires agents to perform supra-computable
tasks.

28 If we consider the analogs of these theories in the context of worlds modelled by finite binary
strings, we find that obvious versions of Frequentism and of the Best System approach are
unsatisfiable with respect to the finite-world version of CCP (because they are improper),
while the obvious finite-world version of Super-Determinism is satisfiable for it.
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Definition 4.1 (CCCP). Let L be a theory of chance and let � be a prior. We say that �
satisfies the Computable Chance–Credence Principle (CCCP) for L if � is computable
and satisfies CCP for L.

Definition 4.2. We call a theory of chance CCCP-satisfiable if there is a prior satisfying
CCCP for it; otherwise we call it CCCP-unsatisfiable.

We are going to see that there are nontrivial obstructions to CCCP-satisfiability.
Indeed, none of our paradigm examples of theories of chance are CCCP-satisfiable.

4.1. Learning and delta-functions. Our first objective will be to show that
Computable Super-Determinism and the Toy Best System Theory are not CCCP-
satisfiable. We will approach this result indirectly via one of the classic computer
science models of inductive learning (this will give us purchase in Section 4.3 on the
question of what sort of theories are CCCP-satisfiable).29

Definition 4.3. An extrapolating machine is a computable map m : 2<� → {0, 1}.
Definition 4.4. Let m be an extrapolating machine and let S ∈ 2�. We say that m
NV-learns S if there is an N such that m(S�n) = S(n + 1) for all n > N.

Informal picture: a learning agent is being fed an infinite binary data stream S
bit-by-bit and each time a bit is revealed, the agent makes a guess as to the identity
of the next bit. An extrapolating machine m is a computable strategy that an agent
might use for arriving at such guesses: when given a binary string � (a finite data set),
m outputs a bit m(�). Extrapolating machine m successfully NV-learns S just in case
from some point onwards in processing S, all of m’s guesses are correct (here NV=next
value). Note that any binary sequence NV-learned by an extrapolating machine must
be computable.

Proposition 4.5 (Putnam [54]a,b). No extrapolating machine NV-learns each
computable sequence.

Proof. Let m0 be an extrapolating machine and define the binary sequence S as
follows: the first bit of S is 1 – m0(∅) (the opposite of what m0 predicts on empty
input); and in general, S(k + 1) is the opposite of what m0 predicts when shown the
first k bits of S. S is computable (since m0 is). And m0 does not NV-learn S (since it
never predicts a bit correctly).

Given a computable prior � we can define an extrapolating machine m� as follows.
Let κ be a computable number in the open unit interval that is not in the set X� :=
{�(b | �) | b ∈ 2, � ∈ 2<�} (i.e., � never uses κ as the conditional probability that the
next bit will be 0 or that it will be 1).30 Define m� : 2<� → 2 as follows: on input of

29 This model of learning has its roots [54, 55] and was codified and developed in [6] and in
[16]. For classic surveys see [2] and [50, chap. VII].

30 It is always possible to find such a κ: let �1, �2, ... be a computable enumeration of the binary
strings; then �(0|�1), �(1|�1), �(0|�2), �(1|�2), ... is an enumeration of some computable real
numbers; since we have �, we can calculate any of these to any desired degree of accuracy;
so the numbers listed are uniformly computable and so must not include all computable
numbers in the unit interval (see Remark 4.14). A variant of this argument shows that we
can choose a κ arbitrarily close to .5: otherwise the computable numbers in some open
subinterval around .5 would be uniformly computable—and by omitting some initial bits,
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binary string �,m� outputs 0 if �(0 | �) > κ and outputs 1 if �(0 | �) < κ. Since κ and
� are computable, so is m�.31

Proposition 4.6. Let � be a prior on 2� and let S be a binary sequence. If � =
� + c · �S, where c > 0 and � is a measure, then m� NV-learns S.

Proof. We can assume without loss of generality that �({S}) = 0.We then have

�(S(n + 1) |S�n) =
�(S�(n + 1))
�(S�n)

=
�(S�(n + 1)) + c · �S(S�(n + 1))

�(S�n) + c · �S(S�n)

=
�(S�(n + 1)) + c
�(S�n) + c

,

since �S(S�n) = 1 for all n. Since �({S}) = 0, by making n sufficiently large we can
make �(S�n)—and therefore also �(S�(n + 1))—as small as we like.32 So by making
n sufficiently large, we can make �(S(n + 1) |S�n) as close to one as we like. So for
sufficiently large n, m� always predicts the next bit of S correctly (i.e., m� NV-learns
S—no matter what choice of κ we made in defining m�).

Proposition 4.7. Computable Super-Determinism and the Toy Best System Theory
are CCCP-unsatisfiable.

Proof. Any prior � on 2� that satisfied CCCP for one of these theories would in
particular satisfy CCP for that theory—and so, by Proposition 3.4, would contain each
computable delta-function measure as a nugget of truth. But then by Proposition 4.6,
the extrapolating machinem� induced by�would NV-learn each computable sequence.
But Proposition 4.5 shows that to be impossible.

So Computable Super-Determinism and the Toy Best System Theory, although CCP-
satisfiable, are CCCP-unsatisfiable: they admit priors that satisfy the weak form of the
Principal Principle that we have been considering; but all such priors are uncomputable.

Remark 4.8. Adleman and Blum [1] show that if A is an oracle, then there exists a
Turing machine with access to A that NV-learns every computable sequence if and only
if A is high (i.e., A enables the computation of a function that grows more quickly than
any computable function). So the problem of NV-learning all computable sequences is
unsolvable, but strictly easier than the Halting Problem.

4.2. Learning and Bernoulli measures. The above discussion shows that Com-
putable Super-Determinists must rein in their ambitions, maintaining that only a
well-behaved proper subset of computable delta-function measures can correspond to
chance laws, if they want their theory to support the existence of a prior satisfying

we can transform a listing of the computable numbers in such a subinterval into a listing of
all computable numbers in the unit interval. Note that it is not required for present purposes
that the identification of a suitable cutoff κ for a given extrapolating machine need itself be
a computable task.

31 We choose κ /∈ X� because determining that two computable numbers are equal is not in
general as computable task. On this point see, e.g., [53, theorem 3.3].

32 This follows from the general fact that measures exhibit continuity from above—see e.g., [43,
theorem 1.36].
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CCCP. We will see next that Computable Frequentists must likewise fall back to a
position on which only some of the computable Bernoulli measures arise as laws of
chance, if they want their theory to support the existence of a prior satisfying CCCP.
And, of course, fans of the Toy Best System will be driven to make both moves at
once.33

We begin by recalling some basic notions from the theory of algorithmic randomness
deriving from [48]. A familyU = {Uk}k∈N of subsets of 2� is called a uniformly effective
family of open sets if there is a Turing machine that on input k ∈ N outputs a sequence
�k1 , �k2 , ... of binary strings with the feature that

Uk =
∞⋃
j=1

[[�kj ]].

That is: each Uk can be effectively approximated as a union of basic subsets of 2� ;
and this approximation is uniform in k, in the sense that a single machine can handle
each of the Uk.34 Let � be a computable probability measure on 2�. Then an effective
�-null set is a subset T of 2� that can be written in the form T =

⋂
Uk, for some

uniformly effective family of open sets, {Uk}, satisfying �(Uk) ≤ 2–k.35 We say that a
binary sequence is �-Martin-Löf random if it does not belong to any effective �-null set
and we denote by ML� the set of such sequences. Note that each computable � ∈ P
assigns measure one to its ML� .

36

Proposition 4.9. Let R = {rk}k∈I be a set of computable binary sequences and for
each k ∈ I let �k be the Bernoulli measure whose parameter admits rk as a binary
expansion. If � is a prior that can be written in the form � = � +

∑
ck · �k (with � a

possibly trivial measure and each ck > 0), then there is an extrapolating machine that
NV-learns each rk.

Proof. (1) We claim that for anym ∈ I and any binary sequence S, if S ∈ ML�m, then
S ∈ ML�. For suppose that S /∈ ML�. Then there exists a uniformly effective family of
open sets, U1, U2, ..., with �(Uk) ≤ 2–k (for each k ∈ N) and S ∈

⋂∞
k=1Uk. Choosing

j large enough to ensure that 1/cm ≤ 2j , we have

�m(Uk) ≤
1
cm
�(Uk)

≤ 2–k+j

for each k ∈ N. So if we takeVk := Uk+j , then theVk form a uniformly effective family
of open sets and satisfy �m(Vk) ≤ 2–k, with S ∈

⋂
Vk =

⋂
Uj. So S /∈ ML�m .

33 Much of the argument of this section was suggested by Christopher Porter (in private
communication).

34 And if we equip 2� with the product topology (as in footnote 6), then each Uk is an open
subset of 2�.

35 Commentary: such T are �-null sets that can be effectively specified in a certain sense. To
belong to a given effective �-null set is to be special in a certain effectively specifiable way.
The intuition behind the present approach is that a sequence is �-random if it avoids each
such null set. You can think of the �-Martin-Löf random sequences as those that exhibit no
effectively specifiable behaviour that would be arbitrarily surprising to agents expecting to
see data sampled from �.

36 Since there can only be countably many effective �-null sets, their union must be a �-null set.
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(2) Next, we invoke a result due to Porter: for any computable measure 	 on 2�, there
is a computable measure � on 2� such that for each r ∈ [0, 1], if ML	 ∩ML�r �= ∅, then
r ∈ ML� .

37 Applied to our case, this implies that there exists a computable probability
measure � such that R ⊆ ML� .

(3) It follows that � must assign positive probability to each {rk}: otherwise, since
� and rk are both computable, we could choose initial segments �1, �2, ... of rk so
that the family of basic sets [[�1]], [[�2]], ... would be uniformly effectively open and
satisfy �([[�m]]) < 2–m, with rk ∈

⋂
[[�j ]], contradicting rk ∈ ML� . It then follows from

Proposition 4.6 that the extrapolating machine m� determined by � must NV-learn
each rk.

Corollary 4.10. Computable Frequentism and the Toy Best System are CCCP-
unsatisfiable.

Remark 4.11. Vitányi and Chater [63] develop a model of learning in which an agent
viewing a binary data stream attempts to guess a code number for a Turing machine that
calculates a probability measure on 2� relative to which the data stream is Martin-Löf
random. Barmpalias et al. [5, theorem 1.6] show that the set of computable Bernoulli
measures is not learnable in this sense—indeed, they further show that this set is learnable
relative to an oracle if and only if that oracle is high. It is natural to conjecture that an
analogous result holds in our setting: there exists a prior satisfying CCP for computable
Frequentism that is computable relative to a given oracle if and only if that oracle is high.

4.3. Satisfying CCCP. So in order for a prior to satisfy CCCP for a given theory
of chance, the set sequences on which the theory’s delta-function laws of chance are
concentrated and of parameters of its Bernoulli measure laws of chance must both be
NV-learnable. Here we consider the contours of NV-learnability. We denote byNV (m)
that set of sequences NV-learned by extrapolating machine m.

Definition 4.12. A set F of binary sequences is dense if for each binary string �, there
is a sequence S in F with � as an initial segment.38

Definition 4.13. A set F of binary sequences is uniformly computable if there is an
enumeration S1, S2, S3, ... of the elements of F such that the map that sends (k, �) ∈ N2

to Sk(�) is computable.

Remark 4.14. It is immediate that each member of a uniformly computable set of
sequences is computable. A straightforward diagonalization argument shows that the set
of computable sequences is not itself uniformly computable. And since any finite subset
of 2� is uniformly computable and the union of any two uniformly computable sets of
sequences in uniformly computable, it follows that any uniformly computable family of
binary sequences must exclude infinitely many computable binary sequences. Moral: to
say that a set of sequences is uniformly computable is to say that it is computationally
tractable in a certain sense.

37 See [52, theorem 3.7].
38 This is just the usual topological notion, if we impose the product topology on 2� (see

footnote 6).
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Proposition 4.15. Let F be a set of binary sequences. The following are equivalent:

i) F is uniformly computable and dense.
ii) There is an extrapolating machine m such that F = NV (m).

Proof. Let F ⊂ 2� be uniformly computable and dense. Fix an enumeration S1, S2,
... of the members of F such that the map (k, �) 	→ Sk(�) is computable. Define an
extrapolating machine m as follows: on input of an n-bit binary string �, m finds the
least k such that Sk�n = � and gives output m(�) = Sk(n + 1) (such a k always exists
since F is dense). For any Sk ∈ F , we can find n large enough so that there is no
j < k with Sj �= Sk and Sj�n = Sk�n. It follows that m NV-learns each sequence in F .
Suppose, on the other hand, that m NV-learns S and let � be an initial segment of S
that contains all of the bits that m predicts incorrectly. On input �, m uses some Sk that
has � as an initial segment to predict that next bit. This prediction is correct, so m also
uses Sk to predict the next bit—and all subsequent bits. So S = Sk. So each sequence
NV-learned by m is in F . So F = NV (m).

Suppose that there is an extrapolating machine m such that F = NV (m). Then F
must be dense, since it must include, for each binary string �, the sequence S�m that has
� as an initial segment and in which all subsequent bits are chosen to vindicate m’s
predictions. Further, if �1, �2, �3, ... is a computable enumeration of the binary strings,
then S�1m , S�2m , S�3m , ... is an enumeration of the sequences NV-learned by m and the map
(k, �) 	→ S�km (�) is computable, since m and our enumeration of the strings are both
computable. So F is uniformly computable.

Corollary 4.16. LetF be a set of binary sequences. There is an extrapolating machine
that NV-learns each sequence in F if and only if F is a subset of a uniformly computable
set of binary sequences.

Proof. Note that the union of a uniformly computable set of sequences with the set
of periodic sequences (i.e., those sequences that can be written in the form ��� ... for
some binary string �) is both uniformly computable and dense.

Remark 4.17. This corollary gives a version of one of the two standard characteri-
zations of NV-learnability.39 The other is: A set F of computable binary sequences is a
subset of some NV (m) if and only if it is a subclass of an abstract complexity class.40

One gloss that has been given to this latter characterization: “It says, in essence, that
the [computably] extrapolable sequences are the ones that can be computed rapidly.”41

Perhaps a more accurate gloss would be: for any computably NV-learnable set S of
sequences, there is an at least somewhat natural notion of rapidly computable relative to
which every sequence in S is rapidly computable.

39 It is usually given in the form: a set of sequences is a subset of some NV (m) if and only if
it is a subset of a computably enumerable family of computable binary sequences. See the
references in footnote 29.

40 See the references in footnote 29. Roughly, one defines an abstract complexity class by
choosing a way of measuring the complexity of a computation (satisfying certain weak
conditions) and choosing a computable upper bound on this complexity, and then restricting
attention to sequences satisfying this bound. For a brief introduction to abstract complexity
classes, see [32, sec. 12.7]. For a thorough treatment, see [50, chap. VII].

41 See [16, p. 127]. For natural senses in which any NV-learnable set of computable sequences
forms a “small” subset of the set of computable sequences, see [22]. For further discussion,
see [10].
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All of this may seem congenial to fans of the Best System approach. True, they may
have to recognize fewer chance laws than they might have originally hoped—but to the
extent that we can think of there being some sort of complexity cut-off that rules out
certain delta-function measures and Bernoulli measures as respectable chance laws, that
may seem to uphold the spirit of the Best System approach. (But here it is important to
keep in mind the arbitrariness entailed by the considerations canvassed in Remark 4.14.)

Let us end this discussion on a positive note.

Definition 4.18. We say that a set M of probability measures on 2� is uniformly
computable if there is an enumeration �1, �2, ... of the elements of M and a Turing
machine that on input of a binary string � and non-zero natural numbers j and k, give as
output a k-bit approximation (as in Section 1.2) to �j(�).

Proposition 4.19. If L is a proper theory of chance whose set of chance laws is
uniformly computable and includes a prior, then L is CCCP-satisfiable.

Proof. Let 	1, 	2, ... be an enumeration of the chance laws of L in virtue of which
these laws are uniformly computable. Consider the measure

� :=
∑ 1

2k
	k.

It is a prior (since by assumption one of the 	k ’s is). It is immediate that � satisfies
CCP for L. And it is straightforward to show that � is computable.42

§5. Will we never learn? A reaction that people sometimes have to the Principal
Principle: Who cares how my prior behaves conditional on an event E like that of the coin
being fair? If I am a true Humean, I should regard this E as something that could never
be part of my evidence, since it is a holistic fact about the history of the entire universe.43

Lewis has an answer to this challenge.44

To the believer in chance, chance is a proper subject to have beliefs
about. Propositions about chance will enjoy various degrees of
belief, and other propositions will be believed to various degrees
conditionally upon them.45

42 See, e.g., [10, proposition 4.7].
43 For this point of view, see [57, p. S104]. For critical discussion, see [17, sec. 3.3].
44 See [45, pp. 84–86 and 106–109].
45 See [45, p. 84]. Lewis [45, p. 86] offers the following example: suppose that you have credence
.27 that the chance of Heads is .5, credence .22 that the chance of Heads is .35, and credence
.51 that the chance of Heads is .8—what credence should you have in Heads? The obvious
answer is

(.5 × .27) + (.35 × .22) + (.8 × .51) = .62.

This makes sense as an application of the law of total probability (writing H for the event of
Heads, A for the chance being .5, B for it being .35, and C for it being .8),

p(H ) = p(H |A) × p(A) + p(H |B) × p(B) + p(H |C ) × p(C ),

so long as the probability functionp,which represents your credences, satisfiesp(H |A) = .5,
p(H |B) = .35, and p(H |C ) = .8. That is, the obvious calculation works here so long as
you credences satisfy a basic form of the Principal Principle.
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To the subjectivist who believes in objective chance, particular or
general propositions about chance are nothing special. We believe
them to varying degrees. As new evidence arrives, our credence in
them should wax and wane in accordance with Bayesian confirmation
theory. It is reasonable to believe such a proposition, like any
other, to the degree given by a reasonable initial credence function
conditionalized on one’s present total evidence.46

We are interested in the Principal Principle, not because we want to be prepared just
in case we should learn the truth of some law of chance, but because chance laws can
be confirmed and disconfirmed: we have varying degrees of credence in various chance
laws and the Principal Principle is a constraint on the rational connection between
those theoretical beliefs and concrete expectations about future events.47

Learnability is in fact an important (if largely subterranean) Lewisian theme in
the paper in which the Principal Principle made its debut.48 He has recourse to non-
standard-valued priors because he thinks that rational priors must be regular (i.e.,
assign non-zero probability to each non-trivial proposition):

it is required as a condition of reasonableness: one who started out
with an irregular credence function (and who then learned from
experience by conditionalizing) would stubbornly refuse to believe
some propositions no matter what the evidence in their favor.49

In a post-script he suggests that “if we start with a reasonable initial credence function
and do enough feasible investigation, we may expect our credences to converge to the
chances.”50

Now, within the standard framework that we have been working in, only Bayesian
agents who assign non-zero prior probability to a chance hypothesis can become more
confident of that chance hypothesis through experience. And within our standard
framework, no Bayesian agent can assign non-zero prior probability to each chance
hypothesis of a theory of chance that has uncountably many laws of chance. It is
natural to think that something has gone wrong here. Surely Basic Frequentism, despite
having uncountably many laws of chance, should provide an extraordinarily hospitable
environment for a Bayesian agent attempting to learn the chance facts!

One option would be too simply excuse priors from having to defer to chance laws
when they assign the corresponding chance hypothesis probability zero.51

Definition 5.1 (CCP∗). Let L be a theory of chance and let � be a prior. We say that �
satisfies CCP∗ for L if: for any Borel subset A of 2� and for any chance law 	 such that
� assigns positive probability to Λ := L–1(	), we have �(A |Λ) = 	(A).

Relative to Basic Frequentism, the fair coin measure satisfies CCP∗ (but not CCP of
course). Someone who begins life with this prior is certain from birth that the chance

46 See [45, p. 106].
47 On this point, see [17] as well as [45, pp. 106–109].
48 On the other hand, in this strand of his work, Lewis shows no interest in considerations of

computability.
49 See [45, p. 88—see also p. 96].
50 See [45, p. 121].
51 Compare with, e.g., the version of Miller’s Principle offered in [51, sec. 1].
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of a 0 at any particular future time is 1/2 and remains certain of this no matter how
strongly the data speak against this hypothesis and in favour of others.52 To accept
CCP∗ as an explication of the idea that a rational agent’s credence function should
defer to chance is to give up entirely on the idea that part of what deference to chance
involves is being open to learning chance hypotheses.53

I think that we should be interested in finding variants of CCP that require priors
to be open to the learning of chance hypotheses.54 To this end, let us zoom out. The
thought behind the Best System approach is that a chance law of a world is a sort
of optimal scientific summary of the pattern of events at that world (relative to the
ordinary standards of scientific practice). The thought behind the Principal Principle
is that (in ordinary circumstances at least) to the extent that you are confident that
the chance law of your world is given by 	, your credences should be close to the
	-chances. Suppose that a given prior � satisfies at least the spirit of the Principal
Principle and embodies the canons of scientific rationality (preferring simpler theories
to more complex ones, etc.).55 Then it seems that if � sees larger and larger portions
of a world with chance law 	0, it should become more and more confident that the law
of chance is 	0-like (since � is a good scientist, it will eventually home in on the best
scientific description of its world) and hence, upon being conditionalized on larger
and larger data sets, the probabilities that � assigns events will approach those that 	0

assigns them (since � satisfies the spirit behind the Principal Principle).
Let L be a proper theory of chance and let 	 be a chance law of L with corresponding

chance hypothesis Λ = L–1(	). Let S be typical in Λ.Our line of thought above tells us
that as n → ∞, we expect that �(· |S�n) comes closer and closer to 	(· |S�n) in some
sense. So let us consider generalizations of CCP of the form: there exists a prior � such
that for every chance law 	, for 	-almost all sequences S in the corresponding chance
hypothesis, the �(·, |S�n) converge to the 	(· |S�n) as n → ∞. The question is: What
notion of convergence should we demand here?

5.1. Merging. Recall that the total variation distance between probability measures
	 and � on 2� is supA∈B |�(A) – 	(A)|.56 The following is a specialization to our
context of the notion of merging introduced in [14] and subsequently widely discussed
by statisticians and game theorists.

52 Some seem to feel the temptation to say: Yes, but if that if the fair coin is your prior that is
exactly what you should do! That is of course correct according to subjective Bayesianism.
But the Principal Principle is not consistent with subjective Bayesianism: it was put forward
as a part of an attempt to articulate constraints on rational priors beyond mere coherence.
There is not much point to such constraints unless one is willing to say: some agents who are
coherent and update by conditionalization are nonetheless irrational.

53 The same sort of case can be made against a reformulation of CCP in terms of regular
conditional probabilities—see Appendix B.4. Dmitri Gallow pointed out to me that a version
of this problem arises for New Principle of Hall [28] and Lewis [46] (discussed in Appendix A):
in the setting of finite worlds, the fair coin measure satisfies the New Principle for the theory
of chance that assigns each world the Bernoulli measure whose parameter gives the relative
frequency of 0’s at that world.

54 Further remarks about alternative directions can be found in Appendix B.
55 I do not actually believe that it is possible to design priors that always prefer simpler

hypotheses—see [9]. But here I bracket my various heretical views about the shortcomings
of the Bayesian account of rationality.

56 For background on this notion of distance and its relation to other ways of topologizing
spaces of probability measures, see, e.g., [26].
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Definition 5.2 (Merging). Let 	 and � be probability measures on 2�. We say that �
merges with 	 if there is a set of sequences of 	-measure one such that for each S in that
set:

lim
n→∞

sup
A∈B

|�(A |S�n) – 	(A |S�n)| = 0.

Definition 5.3 (M-CCP). Let L be a theory of chance. We say that a prior � on 2�

satisfies the Merging Chance–Credence Principle (M-CCP) if�merges with each chance
law of L.

If a prior �merges with a proper law of chance 	 of a theory of chance, then we can
take the set of sequences that witnesses merging to be a subset of the chance hypothesis
of 	.

Definition 5.4. We call a theory of chance L M-CCP-satisfiable if there is a prior
that satisfies M-CCP for L. If there is a computable prior with this feature, we call L
M-CCCP-satisfiable.

A pair of classic results clarify what it takes for a prior to merge with a probability
measure �.Recall that if �1 and �2 are measures on a measurable space, then we say that
�1 is absolutely continuous with respect to �2 if for each measurable set A, �1(A) > 0
implies �2(A) > 0. In this case we write �1 Î �2.

Remark 5.5. Note that if we have some measures satisfying � = �1 + �2, then �1, �2 Î

�. So, in particular, if a prior � contains a proper law of chance 	 as a nugget of truth,
then 	 Î �.

Proposition 5.6 (Blackwell and Dubins [14]). Let 	 be a probability measure on 2�

and let � be a prior on 2�. If 	 Î �, then � merges with 	.

Proposition 5.7 (Lehrer and Smorodinsky [44]). Let 	 be a probability measure on
2� and let � be a prior on 2�. If � merges with 	, then 	 Î �.

Each prior merges with uncountably many probability measures.57 But only
countably many of these can be chance laws of any given reductionist theory of chance.

Proposition 5.8. Let L be a theory of chance. If L is M-CCP satisfiable, then L has
only countably many chance laws.

Proof. Suppose that � satisfies the M-CCP for L. Let 	 be a law of chance of L
with chance hypothesis Λ = L–1(	). Since L is a theory of chance, we have 	(Λ) > 0.
Since � merges with 	, Proposition 5.7 then implies that �(Λ) > 0. So � must assign
positive probability to each chance hypothesis of L—so L can have only countably
many chance laws.

Corollary 5.9. Super-Determinism and Basic Frequentism are M-CCP-unsatisfiable
(and hence also M-CCCP-unsatisfiable).

As an immediate consequence of Remark 5.5 and Propositions 3.4 and 5.6 we have:

Proposition 5.10. If a prior satisfies CCP for a theory of chance, then it also satisfies
M-CCP for that theory.

57 See, e.g., [10, proposition 4.4].
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Corollary 5.11. A theory is M-CCP satisfiable if it is CCP satisfiable. In particular,
Computable Super-Determinism, Computable Frequentism, and the Toy Best System
Theory are M-CCP-satisfiable.

Remark 5.12 (Mixtures and Merging). Let {�k}k∈I be a countable family of
probability measures at least one of which is a prior and for each k ∈ I, let qk > 0
with

∑
k∈I qk = 1. Then � :=

∑
qk · �k is a prior. And � merges with any measure

merged with by one of the �k : if � is merged with by �k, then � Î �k (by Proposition 5.7),
so � Î � (given how � was defined ), and so � merges with � (by Proposition 5.6).

In the case of Computable Super-Determinism, a prior satisfies CCP if and only if
it satisfies M-CCP. But, for more typical theories, we expect that there will be priors
that satisfy M-CCP without also satisfying CCP.

Example 5.13. A theory L and a prior �may satisfy M-CCP without satisfying CCP
(even if L is proper and � is computable): let L be the theory that assigns the fair coin
measure �.5 to every sequence and let �† be the prior that thinks there is a .9 chance
that the first bit is a 0 and thinks that each subsequent bit is chosen by flipping a fair
coin. We have merging (because �.5 and �† agree completely when conditionalized on any
non-trivial initial segment) but CCP is violated.

Example 5.14. Improper theories of chance are never CCP-satisfiable. But they can
be M-CCCP satisfiable. Consider the theory of chance that assigns the measure �† of the
preceding example to each sequence that begins with 0 as its law of chance (and which
considers sequences that begin with 1 to be lawless). This theory is CCP-unsatisfiable
(because it is improper—�† assigns its chance hypothesis probability .9). But the fair coin
measure (considered as a prior) satisfies M-CCP for this theory.

We have a partial converse to Corollary 5.11.

Proposition 5.15. Any proper theory of chance that is M-CCP-satisfiable is also
CCP-satisfiable.

Proof. Let L be a proper theory of chance that is also M-CCP satisfiable. We know
from Proposition 5.8 that L has a countable family of laws of chance: 	1, 	2, .... Let
� be a prior that merges with each 	k. A result of Ryabko tells us that if K is a set of
probability measures on 2� and there exists a probability measure � that merges with
each measure in K, then there exists a measure �∗ that merges with each measure in
K and which can be written as a sum of measures, each of which is a positive multiple
of a measure in K.58 Applied to our case: there must be a �∗ that is a weighted sum
of the 	k and which merges with each 	k. By Proposition 5.7, each 	k Î �∗—so each
	k appears with positive weight in �∗. So �∗ (or the result of adding something to it
to make sure that we have a prior as in the proof of Corollary 3.6) satisfies CCP for L
(by Proposition 3.4).

Of course, it does not follow from this that M-CCCP-satisfiability implies CCCP-
satisfiability for a proper theory of chance L: it could be that the only computable
priors that merge with every chance law of L are not themselves weighted sums of the
chance laws of L. So, in particular, the above results leave open the questions whether
Computable Super-Determinism, Computable Frequentism, and the Toy Best System

58 See [58, theorem 4].
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Theory are M-CCCP-satisfiable. We will see in Proposition 5.25 that Computable
Super-Determinism is M-CCCP-unsatisfiable. We can use a variant of the proof of
Proposition 4.9 to show that there are no computable priors that satisfy M-CCP for
Computable Frequentism or for the Toy Best System.

Proposition 5.16. Let R = {rk}k∈J be a set of computable binary sequences and for
each k ∈ J, let �k be the Bernoulli measure whose parameter admits the binary expansion
rk. If � is a computable prior that merges with each �k, then there is an extrapolating
machine that NV-learns each rk.

Proof. It suffices to show that for each rk ∈ R, ML� ∩ML�k �= ∅, and then to argue
as in steps (2) and (3) of the proof of Proposition 4.9.

For each k ∈ J, let Nk be the set of sequences in which 0’s have limiting relative
frequency rk. Then we can write � = � +

∑
k∈J ck�k, where � is a (possibly trivial

measure) that considers each Nk a null set, each ck > 0, and each �k is a probability
measure that assignsNk probability one (so ck · �k is the restriction of � toNk). Since
�merges with each �k, we know via Proposition 5.7 that �k Î �, from which it follows
that �k Î �k.

The �k may or may not be computable. But the notion of Martin-Löf randomness
can be generalized to apply to arbitrary probability measures: we call a sequence S
blindly Martin-Löf random relative to the probability measure � if there is no uniformly
effective family of open sets U1, U2, ... such that S ∈

⋂
Uk and �(Uk) ≤ 2–k for each

k.59 We write BML� to denote the set of sequences blindly Martin-Löf random relative
to the probability measure � (of course BML� = ML� when � is computable). Note
that we have �(BML�) = 1 for any probability measure �.60

We claim that for any k ∈ J, we have BML�k ∩ML�k �= ∅. For suppose otherwise.
Then of course �k(ML�k ) = 0 (since �k(BML�k ) = 1). But since �k(ML�k ) = 1, this
contradicts the fact that �k Î �k.

And we can now argue, as in the first step of the proof of Proposition 4.9, that since
� can be decomposed as a sum of measures in which each �k appears with non-zero
weight, every sequence in BML�k must also be in ML�. So we have, as desired, that for
each rk ∈ R, ML� ∩ML�k �= ∅.

Corollary 5.17. There are no computable priors that satisfy M-CCP for Computable
Frequentism or for the Toy Best System.

5.2. Weak merging. M-CCP is weaker than CCP and M-CCCP is weaker than
CCCP. But for proper theories of chance M-CCP satisfiability is equivalent to
CCP-satisfiability and it would be surprising if there were a significant gap between
M-CCCP-satisfiability and CCCP-satisfiability for such theories. So it makes sense to
consider a further alternative to CCP. Here is another criterion of learning that has
played some role in game theory.61

59 For this notion, see [42]. For some purposes it is natural to work with another generalization
of the notion of Martin-Löf randomness to the setting of arbitrary measures, on which one
requires �-random sequences to avoid all �-null sets that are effectively definable relative to
an oracle encoding �. See [56].

60 The reasoning of footnote 36 carries over unchanged.
61 Weak merging was introduced in [38]. The presentation here follows that of Lehrer and

Smorodinsky [44]. For further discussion, see [10] (where weak merging is called next-chance
learning).
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Definition 5.18 (Weak merging). Let 	 and � be probability measures on 2�.We say
that � weakly merges with 	 if there is a set of sequences of 	-measure one such that for
each S in that set:

lim
n→∞

|�(0 |S�n) – 	(0 |S�n)| = 0.

Definition 5.19 (WM-CCP). Let L be a theory of chance. We say that a prior � on 2�

satisfies the Weak Merging Chance–Credence Principle (WM-CCP) for L if � weakly
merges with each chance law of L.

If a prior � weakly merges with a proper law of chance 	 of a theory of chance, then
we can take the set of sequences that witnesses weak merging to be a subset of the
chance hypothesis of 	.

Definition 5.20. We call a theory of chance L WM-CCP-satisfiable if there is a prior
that satisfies WM-CCP forL. If there is a computable prior with this feature, we say that
L is WM-CCCP-satisfiable.

The following is immediate.

Proposition 5.21. If one probability measure merges with another, then the first also
weakly merges with the second. If a theory of chance is CCP- or M-CCP-satisfied
(CCCP- or M-CCCP-satisfied ) by a given prior, then it is also WM-CCP-satisfied
(WM-CCCP-satisfied ) by it. If a theory is CCP- or M-CCP-satisfiable (CCCP- or
M-CCCP-satisfiable) then it is also WM-CCCP-satisfiable (WM-CCCP-satisfiable).

Remark 5.22 (Stronger than it looks). In moving from merging to weak merging we
lower our sights—rather than requiring that, in the limit of large data sets sampled from
	, for every event, the judgement of � of the probability of that event must conform to the
judgement of 	 (in a fashion uniform across events) we require this only for a special class
of events—the identity of the next bit to be revealed.

But to require weak merging is to require more than may be immediately apparent. It
turns out that � weakly merges with � if and only if: as the size of the data set goes to
infinity, for each k, � must asymptotically learn to defer to � in a way uniform across all
events that look k time-steps beyond the data about the chance of all such events.62 So
merging is stronger than weak merging precisely in paying attention to events involving an
infinite number of times (a type events about whose epistemological salience a Humean
might well be suspicious).

Example 5.23. Consider the Bayes–Laplace prior.63 This is the computable probability
measure �̄ determined by the rule that if � is an m-bit string containing � 0’s, then

�̄([[�]]) :=
�! (m – �)!
(1 +m)!

.

Famously, there is a sense in which �̄ is a Lebesgue-uniform mixture of the Bernoulli
measures—and from this it follows that �̄ weakly merges with each Bernoulli measure.64

62 See [44, definition 9 and remark 5].
63 For more on this prior, see, e.g., [21, pp. 119–121], [65, 740 f. and 750], and [34, examples

7.2.4, 7.2.27, and 7.4.14].
64 See, e.g., [23, 24].
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It then follows that �̄ satisfies WM-CCP (indeed, WM-CCCP) for Basic Frequentism
and for Computable Frequentism.

This example shows that theories with uncountably many laws of chance can be
WM-CCP-satisfiable (and even WM-CCCP-satisfiable), even though they must be
CCCP-, CCP-, M-CCCP, and M-CCP-unsatisfiable. But there are limits.

Proposition 5.24. Let L be a theory of chance and let � be a prior that satisfies WM-
CCP for L. Then the laws of chance of L include only countably many delta-functions.
In particular, Super-Determinism is WM-CCP-unsatisfiable.

Proof. We generalize the notion of an extrapolating machine: an extrapolator is
a (not necessarily computable) function from binary strings to bits. We extend the
notion of NV-learning to extrapolators: extrapolator m NV-learns sequence S if when
shown S bit by bit, m is eventually always correct in its predictions about the next bit.
The set of sequences NV-learned by an extrapolator m is always countable (each such
sequence can be generated by extending some binary string by asking m what it expects
to see next). Any prior � determines an extrapolator m∗

� via the rule: m∗
�(�) = 0 if

�(0 | �) ≥ .5, otherwise m∗
�(�) = 1.

Suppose that prior � satisfies WM-CCP for theory of chance L. Suppose that for
some S ∈ 2� , �S is a law of chance of L.We can make �(0 |S�n) as close as we like to
�S(0 |S�n) by choosing n sufficiently large. It follows that m∗

� NV-learns S. Since m∗
�

cannot NV-learn an uncountable set of sequences, there can only be countably many
delta-functions among the laws of chance of L.

Computable Super-Determinism and the Toy Best System Theory are WM-CCP-
satisfiable (being CCP-satisfiable). But they are not WM-CCCP-satisfiable.

Proposition 5.25. No computable prior weakly merges with each delta-function
concentrated on a computable sequence.

Proof. Let � be a computable prior with associated extrapolating machine m� (as
in Section 4.1) and let S be a binary sequence. Arguing as in Proposition 5.24 we see
that if � weakly merges with �S, thenm� NV-learns S. But Proposition 4.5 implies that
no extrapolating machine NV-learns each computable sequence.

Remark 5.26 (Mixtures and weak merging). In Remark 5.12, we saw that when we
build a prior by taking a non-trivial mixture of some measures, that prior merges with
every probability measure merged with by any component of the mixture. The picture is
different with weak merging: Ryabko and Hutter give an example in which� is a prior, � is
a probability measure, and 1

2 (�+ �) fails to weakly merge with a delta-function measure
that is weakly merged with by �.65 So it is not obvious that you can build a prior suited to
a Best System theory of chance by taking a mixture of a prior (such as the Bayes–Laplace
prior) that weakly merges with a desirable range of Bernoulli measures with a measure
that weakly merges with a desirable range of delta-function measures.

65 See [59, proposition 10]. In this connection, see also [44, corollary 6].
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§6. Scorecard.

Super- Computable Basic Computable Toy
Satisfiable? Determinism Super- Frequentism Frequentism Best System

Determinism Theory

CCP No Yes No Yes Yes
M-CCP No Yes No Yes Yes
WM-CCP No Yes Yes Yes Yes

Computably Super- Computable Basic Computable Toy
Satisfiable? Determinism Super- Frequentism Frequentism Best System

Determinism Theory

CCCP No No No No No
M-CCCP No No No No No
WM-CCCP No No Yes Yes No

Super-Determinism: Because this theory has uncountably many chance laws, it is
CCP-unsatisfiable (Proposition 3.4) and M-CCP-unsatisfiable (Corollary 5.9).
A learning-theoretic argument shows that it is also WM-CCP-unsatisfiable
(Proposition 5.24). It is, then, of course also CCCP-unsatisfiable, M-CCCP-
unsatisfiable, and WM-CCCP-unsatisfiable.

Computable Super-Determinism: For this theory, any prior that can be written as a
sum in which each delta-function measure concentrated on a computable sequence
appears with non-zero weight will satisfy CCP (Proposition 3.4); it will therefore
also satisfy M-CCP (Corollary 5.11) and WM-CCP (Proposition 5.21). However, it
turns out that no such prior is computable—and, indeed, that the theory is CCCP-
unsatisfiable (Proposition 4.7). It is WM-CCCP-satisfiable (Proposition 5.25) and
therefore (via Proposition 5.21) also M-CCCP-unsatisfiable.

Basic Frequentism: Because this theory has uncountably many chance laws, it is CCP-
unsatisfiable (Proposition 3.4) and M-CCP-unsatisfiable (Corollary 5.9). It is of
course therefore also CCCP-unsatisfiable and M-CCCP-unsatisfiable. But it is WM-
CCP-satisfiable and even WM-CCCP-satisfiable (Example 5.23).

Computable Frequentism: For this theory, any prior that can be written as a sum
in which each Bernoulli measure �r with a computable parameter r appears with
non-zero weight will satisfy CCP (Proposition 3.4). Priors of this form will also
satisfy M-CCP (Proposition 5.10) and WM-CCP (Proposition 5.21). But since no
prior that can be written as a sum in which each computable Bernoulli measure
appears with non-zero weight can be computable (Corollary 4.10), Computable
Frequentism is not CCCP-satisfiable (by Proposition 3.4). Nor is it computably
M-CCP satisfiable (see Corollary 5.17). On the other hand: Computable Frequen-
tism is WM-CCCP-satisfiable (Example 5.23).
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Toy Best System Theory: The Toy Best System is not CCCP-satisfiable (see
Proposition 4.7 or Corollary 4.10). It is also not WM-CCCP-satisfiable
(Proposition 5.25)—from which it follows that is not M-CCCP-satisfiable
(Proposition 5.21—or see Corollary 5.17). On the other hand, this theory is
CCP-satisfiable (Proposition 3.4). So it is also M-CCP-satisfiable (Corollary 5.11)
and WM-CCP-satisfiable (Proposition 5.21).

§7. Conclusion. The main goal of this paper has been to show that it is more
difficult one might think to find a consistent package consisting of a reductionist
theory of chance and a principle encoding the rational relation between credence and
chance—especially if one expects there to be rationally permitted computable priors.66

In Section 3 we saw there exists a prior probability measure satisfying CCP relative
to a given proper theory of chance if and only if that theory has only countably many
chance laws. This is, of course, a direct consequence of the choice to use ordinary
(i.e., countably additive) probability measures to model rational credal states. Some
reductionists about chance may be happy to ignore theories with uncountably many
chance laws—e.g., advocates of best-system approaches who take fully seriously the
idea that each chance law should be something like a humanly expressible theory of
the world. But many reductionists will, I suspect, regard Basic Frequentism, the laws
of chance of which are the Bernoulli measures, as a theory that should be compatible
with our account of the relation between chance and credence. In the first instance,
such reductionists face a choice between accepting that credal states can be represented
by objects more general than probability measures and replacing CCP with something
weak enough to accommodate the existence of rationally permitted priors adapted to
theories of chance with uncountably many chance laws.

In Section 4 we saw that even if priors exist that satisfy CCP relative to a given
theory of chance, there may be no computable priors with this feature. In particular
this happens when the laws of chance of a theory include each delta-function measure
concentrated on a computable sequence—the root of the problem being that the
computable sequences, though enumerable, are not computably enumerable. A related
problem arises for theories whose chance laws include each Bernoulli measure with
a computable parameter. I do not think we should rest content with an account
of chance and credence that tells us that rationality requires us to adopt a non-
computable credence function—any more than we would be satisfied with an account
of rationality that required rational agents to be able to solve the Halting Problem.
Some reductionists may be happy with the moral that certain prima facie attractive
theories of chance are unsuited to computable agents—such reductionists will then
need to be careful to avoid using computationally intractable sub-families of the delta-
function measures and Bernoulli measures as laws of chance. Others may again be
interested in investigating whether the problem can be avoided by generalizing the
Bayesian framework or by endorsing a constraint of theories of chance on rationally
permitted priors weaker than CCP.

66 Let me reiterate that non-reductionist accounts of chance are neglected here not because I
take them to be immune to the sort of problems encountered above, but because the present
framework would need to be extended in order to accommodate them.
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There are a number of standard strategies that Bayesians have explored in other
contexts in which the presence of an uncountable number of alternatives and/or
awkward null sets causes trouble, including infinitesimal-valued credence functions,
merely finitely additive probabilities, regular conditional probabilities, and primitive
conditional probabilities. These are considered briefly in Appendix B, where it is argued
that none of them offers much help in our current predicament.

Section 5 explored two ways of weakening CCP with an eye to satisfying those
desiderata: M-CCP and WM-CCP. The latter turns out to be the more fruitful for
our purposes. It says, roughly, that the rational priors are those with the feature that,
almost certainly, in the limit of large data sets the posterior probabilities will converge
to the true chances for events that depend on only finitely many times. WM-CCP has
the attractive feature that it is satisfied by the computable Laplace–Bayes prior, both
relative to Basic Frequentism (with its uncountable family of chance laws) and relative
to Computable Frequentism (with its enumerable but computationally intractable
family of chance laws). So it is a substantive constraint on priors that is consistent
with the intuition that frequentism in its several forms is one of the more forgiving of
reductionist approaches—and with the thesis that rationality should be consistent with
computability. But like CCP, WM-CCP cannot be satisfied by any computable prior
relative to a theory of chance that includes among its laws of chance all delta-function
measures concentrated on computable sequences.

Other responses to the problems encountered in Sections 3 and 4 are of course
possible. One of the most natural would be to reject the assumption that we have
implicitly carried over from the literature on the Principal Principle: that our account
of the relation between credence and chance should be the basis of a dichotomy between
priors that are rationally permitted and those that are not rationally permitted. Perhaps
we should instead think of considerations about chance as inducing a partial ordering
more rational than on possible priors. For instance, given a theory of chance L and a
prior � we could look for the largest sub-theory of L (= restriction of L to a subset of
its domain of definition) such that � satisfies one of our principles (CCP, M-CCP, or
WM-CCP) for that sub-theory, considering �1 to be no more rational than �2 if the
sub-theory L1 of L associated with �1 is itself a sub-theory of the sub-theory L2 or L
associated with �2. If there are priors that satisfy the given principle for a given theory
of chance then they will be fully rational in the sense that no prior is more rational then
them—but otherwise, there will just more and less rational priors without any being
fully rational.

Applied to CCP or to M-CCP, this strategy is not particularly enticing: it tells us that
the fair-coin measure is a more rational prior for Basic Frequentism than the Laplace–
Bayes indifference prior—even though agents with the fair coin measure as their prior
will remain certain the chance that the next bit will be 0 is .5 no matter what data they
see, while the posterior probabilities that agents with the Laplace–Bayes prior assign to
that event will converge (almost surely) to the true chance (if one there be) in the limit of
large data sets. But applied to WM-CCP, this strategy suggests a way forward for fans
of the best-system-type approaches in grappling with the problems surrounding delta-
function measures concentrated on computable sequences (although some challenges
would remain).

This is far from a complete account of possible responses to problems exposed
above. But I hope, at least, that one moral is clear: interesting work remains to be
done for anyone who is attracted to Lewis’s accounts of chance and credence and
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who is also inclined to take the computability of priors to be consistent with their
rationality.

§Appendix A. Lewisiana. This appendix examines the relation between the
approach adopted above and the main stream of literature on the Principal Principle.
The two chief goals are to clarify the relation between the Chance–Credence Principle
and the Principal Principle and to examine the proper role of improper theories of
chance.

A.1. CCP and the principal principle. Lewis thought of his Principal Principle
(PP) as a generalization of the sort of principle associated with Miller and Hacking.67

Roughly speaking: PP says not only that a rational prior should agree with the chance
facts when conditionalized on the chancemaking facts, but also there are many further
propositions that are screened off by the chance facts.68 CCP is intended to be a
special case of (a reasonable explication of) Lewis’s PP in which we ignore such further
screened-off propositions (along with attendant complications about admissibility).
For the curious, I offer further comments on the relation between CCP and PP.

1. As Lewis formulates it, PP has no relativity to a theory of chance. But
such relativity is unavoidable: PP is intended to compatible with a range of
reductionist theories of chance (Lewis was not committed to the Best-System
account when he first formulated PP); and priors that satisfy the spirit of PP
with respect to one such theory may be incompatible with the spirit of PP with
respect to other such theory (consider, e.g., the question whether it is rationally
required to put non-zero prior credence on the sequence that eternally alternates
between 0 and 1).

2. As Lewis formulates PP, it involves talking about the chances at a time, which
in the present framework would involve conditionalizing a law of chance on a
binary string. Of course, one such string is the empty string—and specializing
a Lewis-style formulation to that case gives a version in which time no longer
plays a role. And: no content is lost in via this specialization.69

3. Omitting all the bits about the screened-off event E and the time t, Lewis’s PP
reads:

Let C be any reasonable initial credence function. Let x be any
real number in the unit interval. Let X be the proposition that
the chance of A’s holding equals x. Then C (A |X ) = x.70

For Lewis, a proposition is a set of worlds. So in our context, the X must
correspond to a subset of 2�.Which one? Recall that above we quoted Lewis as
saying that the idea behind PP is that a rational prior should have the feature
that it says that the chance of an outcome is 50% when conditionalized on the

67 See [7, Letters 659 and 660].
68 It is not clear that Lewis achieves what he set out to do: if a prior satisfies CCP then it is

(essentially) a weighted sum of the laws of chance—so the only freedom available in choosing
a prior reduces to choosing these weights, and screening-off conditions are not going to help
to fix these. In this connection, see the discussion of Pettigrew [51, sec. 1].

69 On this point, see [51, fns. 3 and 4].
70 Adapted from [45, p. 87]. See also [46, sec. 5].
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proposition that makes it true that the chance of that outcome is 50%. So in
the schema above, X should be the proposition that the chancemaking pattern
obtains in virtue of which the chance of A is x. In the case where 	 is the
only law of chance that assigns A chance x, this is the pattern that makes 	 be
the law of chance—that is, the chance hypothesis Λ corresponding to 	.More
generally, there may be more than one chance law that assigns A chance x—and
then X will be the disjunction of the corresponding chance hypotheses. But if a
prior satisfies a Lewis-style principle that deals in such disjunctive events, then
it also satisfies one in the style of CCP (since you can always replace A by the
conjunction of A with the proposition that a certain chance law holds, which
lands you in the simple case considered above). And, at least in the case where
the disjunction of chance laws under consideration involves only finitely many
chance laws, the converse also holds.71

A.2. What about the New Principle? Each of the five paradigmatic theories of
chance that we have been concerned with is proper. If we were to work with worlds
whose complete histories corresponded to finite binary strings instead of to infinite
binary sequences, it would have been difficult to find interesting proper theories of
chance.72 For instance, since the fair coin measure assigns positive probability to each
finite string, it can be a proper law of chance of a theory for finite worlds only if it is
the sole law of chance.

However, there are improper theories of chance even in the infinite setting.
Example 2.10 provided a toy example: a theory of chance in which all and only
sequences beginning with 1 get the fair coin measure �.5 as their (improper) law of
chance.

It is not obvious that it makes sense to assert the proposition corresponding to an
improper law of chance. In Example 2.10, for instance, the relevant proposition implies
both that the first bit will be 1 and that for each bit, there is only a 50–50 chance that
it will be 1. Now, corresponding to any theory of chance L there is a proper theory of
chance L̄ whose laws of chance are given by 	̄ := 	(· |L–1(	)) (so that L = L̄ if and
only if L is proper).73 To my mind, it is more natural (because less Moore-paradoxical)
to interpret someone apparently advancing an improper chance L as having chosen an
clumsy way to assert L̄.74

The observation that the Principal Principle is inconsistent with improper theories of
chance launched the large and messy literature on undermining with its many attempts
to correct the Principal Principle. If you are the sort of person who likes improper
theories of chance, then it is worth noting the following. Specialized to our setting, the
New Principle of Hall [28] and Lewis [46] takes the following form.

Definition A.1. Let L be a theory of chance and let � be a prior. We say that � satisfies
the New Principle for L if: for any chance law 	 of L with chance hypothesis Λ = L–1(	)
and for any Borel subset A of 2�, we have �(A |Λ) = 	(A |Λ).

71 To see this, use [61, lemma C.10].
72 The literature on the Principal Principle largely focuses on this case. There is something odd

about that: the New Principle (a modification of the original Principal Principle crafted to
handle improper theories of chance) does not do its job in this setting. See footnote 53.

73 For the transformation L �→ L̄, see [3].
74 On this point, see [8]. For critical discussion, see [30].
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Let L be an improper theory of chance with countably many chance laws, 	1, 	2, ....
Let L̄ be the corresponding proper theory with laws 	̄1, 	̄2, .... Let A be any measurable
set. Note that for each k we have Λk = Λ̄k and 	̄k(A) = 	k(A |Λk). It follows that any
prior � satisfies CCP for the proper theory L̄ if and only if it satisfies the New Principle
for the improper theory L. So if you think that improper theories make sense, you can
understand the New Principle as saying: a prior � is rationally permitted relative to
a (not necessarily proper) theory of chance L if and only if � satisfies CCP for the
corresponding proper theory L̄.75

Of course, given an improper theory of chance L we can also ask whether there are
any computable priors that satisfy the New Principle for it. In the exceptional case (as
in Example 2.10) where all of the chance hypotheses of L are basic subsets of 2�, there
will be a computable prior satisfying the New Principle for L if and only if there is a
computable prior satisfying CCP for L̄. But in general there need be no such direct
relation. The following toy example of a variant of Computable Super-Determinism
shows, however, that working with improper theories of chance and the New Principle
does not on its own allow one to evade the problems encountered in Section 4.

Example A.2. Fix some distinction between those 100-bit sequences that are random-
looking (= anyone would reasonably suspect them of being generated by a fair coin) and
others. Consider the theory of chance that only assigns laws of chance to computable
sequences, assigning any sequence whose first 100 bits are random-looking and which is
afterwards all 0’s the law of chance �†

.5 that says that the first 100 bits are sampled from
the fair coin measure and the rest are all 0’s; and assigning any other computable sequence
S the law of chance �S. Note that �†

.5 considers each sequence that is all 0’s after the first
hundred bits to be equally likely. So it is just the equal-weighted mixture of the delta-
function measures concentrated on those sequences (and it is an improper law of chance
since, for instance, the all 0’s sequence is not included in its chance hypothesis). It follows
that if S is computable then 	 = L(S) can be written in the form 	 = � + c · �S for some
c > 0 and some (possibly trivial ) measure �. It then follows that 	̄(·) := 	(· |L–1(	)) can
also be written as a sum in which �S appears with non-zero weight. From this it follows
that if � satisfies the New Principle for L, then � can be written as a sum in which each
computable delta-function appears with non-zero weight. So � cannot be computable.

Remark A.3 (An alternative to the New Principle). A Chance–Credence constraint
suggested by Roberts and by Ismael has been widely discussed as an alternative to the New
Principle.76 Specialized to our setting, the Roberts–Ismael constraint says that, relative
to a theory of chance L, a rational prior � should satisfy �(A) =

∑
�(Λk)	k(A), where

	1, 	2, ... are the chance laws of L, each Λk = L–1(	k), and we do not assume that the 	k
are proper. Applied to the theory of Example 2.10, this proposal is implausibly restrictive,
requiring that a rational prior must put probability one on one of the theory’s two laws of
chance.

§Appendix B. I am not a zero. CCP embodies a straightforward way of under-
standing the idea that credence should defer to chance: for a given theory of chance,

75 One could of course also consider conditions that stand to M-CCP and to WM-CCP as the
New Principle stands to CCP.

76 See [35, 57] (their proposals differ in general, but coincide in our setting). For critical
discussion, see [17, sec. 3.3f].
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it requires of priors that when conditionalized on the set of worlds corresponding to a
law of chance of that theory they give the same probability to each event that the law of
chance itself does. The discussion in the main body of this paper took for granted that
the conditional probability of A given B is the ratio of two real numbers, the probability
ofA&B and the probability of B, and so is undefined when the probability of B is zero.
This led to Proposition 3.4—and from there, along the path that led us to consider
CCCP, M-CCP, and the rest. Many readers will want off the boat as soon as CCP
appears—either because they think it is too intolerant of null sets (see the discussion
of CCP∗ in Section 5) or because they prefer some more sophisticated approach to
handling conditional probabilities.

Here I will briefly give my reasons for cleaving to the simple-minded approach
followed above. In brief: allowing primitive conditional probabilities to model rational
credal states would in any case push us in the direction pursued in Section 5; allowing
merely finitely additive probabilities (or non-standard-valued probabilities) to model
rational credal states would not help us to evade the delta-function version of the
computational obstruction encountered in Section 4; and reformulating CCP in terms
of regular conditional probabilities requires us to abandon the connection between
learning and deference to chance discussed in Sections 1 and 5.

B.1. What about primitive conditional probabilities? The idea that conditional
probability should be taken as primitive rather than unconditional probability has
its attractions. Why not just skip all the aggravation and work in a formalism in which
the basic probabilistic notion takes two arguments, rather than one?

There are several of ways of working this idea out.77 Note that under the most
plausible ones, we can always conditionalize on logical truths and (when defined) the
result of conditionalizing on a proposition is a probability measure. So we always have a
surrogate within this framework for our ordinary one-place prior probabilities. So we
can think of primitive conditional probabilities as plans of the following form: I will
start life with prior �0 (an ordinary probability measure); if I face evidence assigned
positive probability by �0, then I update by conditionalization; if I face evidence
corresponding to a null set of �0, then I deploy a backup plan (essentially, a fall-back
prior that happens to assign the evidence in question probability one).

Fix some fancy gizmos to your liking that encode primitive conditional probabilities.
Cook up a version CCP‡ of CCP adapted to such fancy gizmos. Fix a well-behaved
theory of chance L with uncountably many laws of chance that is CCP‡-satisfied by a
fancy gizmo � relative to this theory of chance. Let us call an ordinary prior on � on
2� L-admissible if it arises by conditionalizing a fancy gizmo satisfying CCP‡ for L on
a logical truth. It will count against this approach if there are no L-admissible priors:
this would tell us that in order to obey the principle that credence should defer to
L-chance, we must assign prior probability zero to some possible finite data sets (and
so be willing to bet our lives against observing such data etc.). It would also be bad if
the fair coin measure were L-admissible: when it comes to forecasting probabilities of
future events, someone with this prior never learns from experience—so it is hard to
see how they could be deferring to L-chance.

So, presumably, there must be some interesting difference between priors that are
L-admissible and those that are not. And since we are working in a context in which

77 For some options, consult [20, 29].
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possible data sets are finite binary strings and in which all priors assign positive
probability to each such string, any agent whose initial credal state is given by a fancy
gizmo �0 that determines an admissible prior �0 is always going to behave exactly like
someone whose initial credal state is given by �0.Now, we know that �0 doesn’t satisfy
CCP (no prior does). This strongly suggests that it will be more fruitful to search
directly for a generalization of CCP that focuses on the response of priors to finite data
sets (as M-CCP and WM-CCP do) rather than proceeding indirectly via the apparatus
of primitive conditional probabilities.

B.2. What about merely finitely additive priors? Note, first, that merely finitely
additive priors defined on �-algebras are non-constructive objects: the existence of
such objects cannot be proven without recourse to some choice-like axiom.78 So such
objects can, presumably, be set aside given our interest in computable priors.

At the same time: any finitely additive probability measure on 2� defined only on
the algebra of sets A generated by the basic sets is in fact countably additive (see
footnote 8).79 So in order to be of interest for present purposes, a finitely additive prior
would need to be defined on an algebra intermediate between the algebra A generated
by the basic sets and the �-algebra B generated by them. Our notion of a computable
probability measure on (2�,B) exploits two facts: there is a natural sense in which by
computably enumerating the binary strings, we effectively list the basic sets; and the
behaviour of a probability measure on the basic sets determines its behaviour on all
Borel sets. Presumably, in order for finitely additive probability measures defined on an
algebra intermediate between A and B to be candidates for computability, we would
want to demand something similar: that there be a sense in which we can effectively list
a set of generators for this algebra and that any finitely additive probability measure
on this algebra is determined by its restriction to these generators.

Example B.1. Let C0 algebra generated by the basic sets together with {0�} (the
singleton set containing the all 0’s sequence).80 In order to specify a finitely additive
probability measure M on (2�, C) it suffices to specify: (i) the probability that M assigns
to each basic set; (ii) the probability that M assigns to {0�} ( freely chosen, subject to the
constraint that it does not exceed R := inf{M ([[0k]]) | k ∈ N}).81 So long as these data

78 On the one hand, any merely finitely additive probability measure on a measurable space
determines a merely finitely additive probability measure on the natural numbers, equipped
with the power-set �-algebra, that considers every finite set a null set—see, e.g., the proof
of Theorem 13.5 in [64]. And it follows from results due to Solovay and to Shelah that the
existence of such a measure on N cannot be proven in ZF—for discussion and references
see [47]. On the other hand, the existence of merely finitely additive probability measures on
(2�,B) can be proven using the axiom of choice (or somewhat weaker assumptions)—see
[12, sec. 2.1] and [47].

79 A is the family of finitely determined subsets of 2�—i.e., the empty set and finite unions of
basic sets. See, e.g., [12, theorem 1.1.9(3)].

80 C0 consists of the empty set plus finite disjoint unions of sets of the following kinds: the
singleton {0�}, basic sets, and the result of deleting {0�} from basic sets. See, e.g., [12,
theorem 1.1.9(3)].

81 Further, every finitely additive probability measure on (2�, C0) arises in this way. See, e.g.,
[12, propositions 3.2.7 and 3.3.1 and theorem 3.3.3].
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are computable, we can reasonably consider the finitely additive measureM : C0 → [0, 1]
to be computable.82

More generally, it is clear how to make sense of the notion of a computable but
merely finitely additive probability measure on an algebra Ck whose generators include
the basic sets together with k singleton sets of computable sequences.

Let C be the algebra generated by the basic sets together with the singleton sets of
all of the computable sequences.83 A C-prior is a finitely additive probability measure
on (2�, C) that assigns positive probability to each basic set. We say that a C-prior M
satisfies C-CCP for Computable Frequentism if for each computable sequence S and
eachB ∈ C we haveM (B | {S}) = �S(B).There are two reasons that this will not allow
us to evade the obstruction to CCCP-satisfiability that we encountered in Section 4.

1. In order for us to think of a finitely additive measure M on C as being
computable, we need to think of there being an effective listing of its generators,
the basic sets and the singletons of computable sequences. This would appear to
require that the computable sequences be uniformly computable—which they
are not (see Remark 4.14).

2. Let M be a C-prior on (2�, C) and let � be the unique prior on (2�,B) that
whose restriction to basic sets coincides with that ofM.Note that ifM ({S}) >
0 for some sequence S, then �({S}) > 0 as well.84 So if M satisfies C-CCP
for Computable Frequentism, then �({S}) > 0 for each computable S—which
means that � cannot be computable. So M cannot be computable even in the
weak sense that its restriction to the basic sets is computable in the usual sense.

B.3. What about priors taking non-standard values? Many philosophers follow
Lewis [45] in using as representors of rational credal states generalized probability
measures taking values in extensions of the unit interval that include infinitesimals.
The real part of such an object is a finitely additive probability measure. So the
considerations adduced above against the helpfulness of merely finitely additive priors
carry over the case of non-standard-valued priors.

B.4. What about regular conditional probabilities? In the following, 2� always
carries the product topology (generated by the basic subsets), any subspace of 2�

always carries the corresponding subspace topology, the unit interval always carries its
standard topology (generated by its open subintervals), and P always carries the weak
topology.85 Unless otherwise noted, when considered as measurable spaces, we take
these spaces to be equipped with the Borel �-algebra generated by their open sets.86

82 Let � be the unique (countably additive) probability measure on (2�,B) that agrees with M
when restricted to basic sets. Then R = �({0�}) and M is the restriction to C0 of � if and
only ifM ({0�}) = R.

83 A finitely additive probability measure on C is determined by its behaviour on sets of the
following kinds: basic sets, finite unions of singleton sets of computable sequences, and basic
sets with such finite unions of singletons deleted. And C consists of finite disjoint unions of
sets of these kinds (plus the empty set). See, e.g., [12, theorems 1.1.9(3) and 3.5.1(ii)].

84 See [12, propositions 3.2.7 and 3.3.1].
85 Recall that the weak topology on P can be characterized as follows: for any p, q ∈ Q with
p < q and any basic set [[�]] of 2� we let Sp,q,� := {� ∈ P |p < �([[�]]) < q}; the open sets of
the weak topology are the unions of finite intersections the Sp,q,� . For details, see [40, sec.
17E].

86 For case of P , again see [40, sec. 17E].
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For any theory of chanceL,we denote by Λ+ the set of sequences to which L assigns
chance laws and by Λ∗ the set of lawless sequences. We have all along required that
each chance hypothesis of a theory of chance be Borel. The following is a natural
strengthening of that requirement.

Definition B.2. A theory of chance L is measurable if it is measurable as a map from
Λ+ to P .87

Our five paradigmatic reductionist theories of chance are measurable. This is
more or less immediate for Super-Determinism, Computable Super-Determinism,
Computable Frequentism, and the Toy Best System.88 And the measurability of the
Basic Frequentism is implicit in standard proofs of the de Finetti Representation
Theorem.89

Remark B.3. 2� and P can both be viewed as computable metric spaces in a natural
way.90 So it makes sense to ask whether an acceptable theory of chance should be
computable as well as measurable. There is a powerful intuitive reason for resisting the
idea that they should be: even computable frequentism is not computable as a map from
2� to P .91 However, computable frequentism satisfies the weaker condition of layerwise
computability.92 So it would perhaps be reasonable to require an acceptable theory of
chance to be layerwise computable.93

Definition B.4. Let L be a measurable theory of chance and let L be the set of chance
hypotheses of L. The kernel of L is the map pL(· ‖ ·) : B × L → [0, 1] defined by

pL(B ‖ Λ) = 	(B)

(where 	 is the chance law corresponding to Λ).94

87 When considering a theory of chance L, it is sometimes helpful to consider the �-algebra
M on 2� generated by Λ∗ together with the chance hypotheses of L. Note that if L is
measurable, then M is a sub-�-algebra of B.

88 For the case of Super-Determinism, see, e.g., [39, lemma 3.1]. For the others, note that for
any theory of chance L and any Borel subset D of P , L–1(D) will be a union of chance
hypotheses of L. When L has only countably many chance laws, each such union is Borel
(being a countable union of Borel sets).

89 See, e.g., [43, sec. 12.3]—thanks to Chris Mierzewski for this labour-saving observation. For
a direct proof of the measurability of Basic Frequentism note that by [39, lemma 3.1.iii] it
suffices to show that for any fixed string � and any closed interval J with rational endpoints,
the set of sequences S such that �r(S)([[�]]) ∈ J is Borel (where r(S) is the limiting relative
frequency of 0’s in S, if defined). This will just be the set of sequences in which the limiting
relative frequency of 0’s lies in some closed interval, which is Borel—see, e.g., [40, p. 70].

90 See, e.g., [25, Appendix B].
91 The problem is that because for each r, the set of sequences in which 0’s have relative frequency

r forms a dense subset of 2�, there is no way to force the relative frequency of 0’s in S�n to
be close to the limiting relative frequency of 0’s in S by choosing n sufficiently large. On this
point see, e.g., [13, sec. IV].

92 See, e.g., [13, sec. IV]. For further discussion, see [33, sec. 3].
93 Thanks to Chris Mierzewski and to Francesca Zaffora Blando for the discussion of these

points.
94 LetM be as in footnote 87 and letS∗ be some L-lawless sequence. Defineκ : B × 2� → [0, 1]

by κ(B, S) := pL(B ‖ L–1(L(S))) (unless S is lawless, in which case set κ(B, S) = �S∗(B)).
Then, for any sequence S, κ(·, S) ∈ P (by the definition of pL) and for any B ∈ B, κ(B, ·)
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Definition B.5. Let L be a proper and measurable theory of chance with kernel pL. Let
� be a prior that considers the set of lawless sequences of L to be a null set. Then pL is a
proper regular conditional probability for � if for each B ∈ B we have

�(B) =
∫
p(B ‖ Λ(S)) d�(S)

(where we write Λ(S) for L–1(L(S))).95

Example B.6. Suppose that L is a proper theory of chance with only countably many
chance laws 	1, 	2 ... (with chance hypotheses Λ1, Λ2, ...). Then L is measurable (see
footnote 88). If � is a prior that assigns positive probability to each Λk and probability
zero to the lawless sequences of L, then pL is a proper regular conditional probability for
� if and only if, for each B ∈ B,

�(B) =
∑
pL(B ‖ Λk)�(Λk),

which happens if and only if pL(B ‖ Λk) = �(B
⋂

Λk)/�(Λk).

The core idea behind the Principal Principle, codified in the Chance–Credence
Principle, is that, conditional on knowing which law of chance is actual, your credences
in events should coincide with their actual chances. In the setting of a proper theory
of chance with only countably many chance laws this says:

Adopt any prior you like, so long as the probability measure
that results from conditionalizing it on a chance hypothesis is the
corresponding chance law.

The preceding example shows that one way to generalize this advice to the setting of
uncountably many chance laws is to advise:

Adopt any prior you like, so long as the kernel for the theory of chance
under consideration is a proper regular conditional probability for it.

Think of this kernel as a plan: if you find out which chance hypothesis obtains, then
you will adopt credences given by the corresponding chance law; requiring that the
kernel be a proper regular conditional probability is a way of constraining priors so
that this plan can be thought of arising naturally out the priors rather than being
wholly arbitrary.

is measurable as a function from (2�,M) to the unit interval (by the measurability of L,
via Lemma 3.1 of [39]). So pL determines a probability kernel from (2�,M) to (2�,B). If
Λ∗ is empty, then this probability kernel is proper, in the sense that for each M ∈ M we
have κ(M,S) = 1 if S ∈M. Otherwise, it is proper modulo Λ∗ (in the sense that the given
condition holds for any M disjoint from Λ∗).

95 For a helpful philosophical introduction to regular conditional probabilities, see [20].
Blackwell and Dubins [15, sec. 1] observe that if (X, C, �) is a probability space and D
is a sub-�-algebra of C, then a proper probability kernel κ : C × X → [0, 1] from (X,D)
to (X, C) is a regular conditional probability for � (in the standard sense) if and only if
�(·) =

∫
κ(·, S) d�(S). Here we specialize to the case (X, C, �) = (2�,B, �) and D = M

(with M as in footnote 87). Since Λ∗ is by assumption a �-null set, the distinction of
footnote 94 between being proper and being proper modulo Λ∗ is immaterial.
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Definition B.7 (CCP∗∗). Let L be a proper and measurable theory of chance and let
� be a prior that considers the set of L-lawless sequences to be null set. We say that �
satisfies CCP∗∗ for L if the kernel pL of L is a regular conditional probability for �.

Good news: the Laplace–Bayes prior of Example 5.23 satisfies CCP∗∗ for Basic
Frequentism.96 Bad news:

Proposition B.8. Let L be a proper and measurable theory of chance. Then any law
of chance of L that is also a prior satisfies CCP∗∗ for L.

Proof. Let 	 be a prior that is also law of chance of L (with chance hypothesis Λ).
Let B be a Borel subset of 2�. Then we have∫

pL(B ‖ Λ(s)) d	(s) =
∫

Λ
pL(B ‖ Λ(s)) d	(s)

=
∫

Λ
pL(B ‖ Λ) d	(s)

=
∫

Λ
	(B) d	(s)

= 	(B)
∫

Λ
d	(s)

= 	(B),

where the first equality follows because L is proper (so that 	(Λ) = 1), the second
because Λ(s) = Λ for each S ∈ Λ, the third by the definition of the kernel pL, the
fourth because 	(B) doesn’t depend on the variable of integration, and the fifth again
via propriety.

Corollary B.9. The fair coin measure satisfies CCP∗∗ for Basic Frequentism.

Example B.10 (Super-Determinism). Also worrying: every prior satisfies CCP∗∗ for
Super-Determinism (i.e., the map L : S 	→ �S). For let � be a prior and let B be Borel
subset of 2� . For any Borel set B and any binary sequence S, we have

pL(B ‖ Λ(S)) = IB ,

where IB is the characteristic function of B. So∫
pL(B ‖ S) d�(S) =

∫
IB(S) d�(S)

= �(B).

(Super-Determinism is of course a pathological theory—but it would be more considerably
more reassuring to be told that no prior is rational for someone who hopes to defer to this
theory of chance.)
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[18] Downey, R., & Hirschfeldt, D. (2010). Algorithmic Randomness and Complex-

ity. New York: Springer.
[19] Earman, J. (1992). Bayes or Bust? A Critical Examination of Bayesian

Confirmation Theory. Cambridge: MIT Press.
[20] Easwaran, K. (2019). Conditional probabilities. In Pettigrew, R. and Weisberg,

J., editors. The Open Handbook of Formal Epistemology. London: PhilPapers
Foundation, pp. 131–198.

https://doi.org/10.1017/S1755020323000151 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020323000151


472 GORDON BELOT

[21] Feller, W. (1968). An Introduction to Probability Theory and Its Applications,
Vol. I (third edition). Hoboken: Wiley.

[22] Fortnow, L., Freivalds, R., Gasarch, W., Kummer, M., Kurtz, S., Smith,
C., & Stephan, F. (1998). On the relative sizes of learnable sets. Theoretical Computer
Science, 197, 139–156.

[23] Freedman, D. (1963). Asymptotic behavior of Bayes’ estimates in the discrete
case. Annals of Mathematical Statistics, 34, 1386–1403.

[24] ———. (1965). Bernard Friedman’s urn. Annals of Mathematical Statistics,
36, 956–970.
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