We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Several rather general sufficient conditions for the extrapolation of the calculus of generalized Dirac operators from L2 to Lp are established. As consequences, we obtain some embedding theorems, quadratic estimates and Littlewood–Paley theorems in terms of this calculus in Lebesgue spaces. Some further generalizations, utilised in Part II devoted to applications, which include the Kato square root model, are discussed. We use resolvent approach and show the irrelevance of the semigroup one. Auxiliary results include a high order counterpart of the Hilbert identity, the derivation of new forms of ‘off-diagonal’ estimates, and the study of the structure of the model in Lebesgue spaces and its interpolation properties. In particular, some coercivity conditions for forms in Banach spaces are used as a substitution of the ellipticity ones. Attention is devoted to the relations between the properties of perturbed and unperturbed generalized Dirac operators. We do not use any stability results.
For a wide family of multivariate Hausdorff operators, the boundedness of an operator from this family i s proved on the real Hardy space. By this we extend and strengthen previous results due to Andersen and Móricz.
We prove the boundedness of Bergman-type operators on mixed norm spaces Lp·q (φ) for 0 < q < 1 and 0 < p ≤ ∞ of functions on the unit ball of ” with an application to Gleason's problem.
We give two charaterizations of the Möbius invariant QK spaces, one in terms of a double integral and the other in terms of the mean oscillation in the Bergman metric. Both charaterizations avoid the use of derivatives. Our results are new even in the case of Qp.
We study the normed spaces of (equivalence classes of) Banach space-valued functions that are Dobrakov, S* or McShane integrable with respect to a Banach space-valued measure, where the norm is the natural one given by the total semivariation of the indefinite integral. We show that simple functions are dense in these spaces. As a consequence we characterize when the corresponding indefinite integrals have norm relatively compact range. On the other hand, we also determine when these spaces are ultrabornological. Our results apply to conclude, for instance, that the spaces of Birkhoff (respectively McShane) integrable functions defined on a complete (respectively quasi-Radon) probability space, endowed with the Pettis norm, are ultrabornological.
The stability properties of the family ℳ of all intersections of closed balls are investigated in spaces C(K), where K is an arbitrary Hausdorff compact space. We prove that ℳ is stable under Minkowski addition if and only if K is extremally disconnected. In contrast to this, we show that ℳ is always ball stable in these spaces. Finally, we present a Banach space (indeed a subspace of C[0, 1]) which fails to be ball stable, answering an open question. Our results rest on the study of semicontinuous functions in Hausdorff compact spaces.
For 0 < p < ∞, we let pp−1 denote the space of those functions f that are analytic in the unit disc Δ = {z ∈ C: |z| < 1} and satisfy ∫Δ(1 – |z|)p−1|f′(z)|pdx dy < ∞ The spaces pp−1 are closely related to Hardy spaces. We have, p−1p ⊂ Hp, if 0 < p ≦ 2, and Hp ⊂ pp−1, if 2 ≦ p < ∞. In this paper we obtain a number of results about the Taylor coefficients of pp-1 -functions and sharp estimates on the growth of the integral means and the radial growth of these functions as well as information on their zero sets.
Let (X, ρ, μ)d, θ be a space of homogeneous type with d < 0 and θ ∈ (0, 1], b be a para-accretive function, ε ∈ (0, θ], ∣s∣ > ∈ and a0 ∈ (0, 1) be some constant depending on d, ∈ and s. The authors introduce the Besov space bBspq (X) with a0 > p ≧ ∞, and the Triebel-Lizorkin space bFspq (X) with a0 > p > ∞ and a0 > q ≧∞ by first establishing a Plancherel-Pôlya-type inequality. Moreover, the authors establish the frame and the Littlewood-Paley function characterizations of these spaces. Furthermore, the authors introduce the new Besov space b−1 Bs (X) and the Triebel-Lizorkin space b−1 Fspq (X). The relations among these spaces and the known Hardy-type spaces are presented. As applications, the authors also establish some real interpolation theorems, embedding theorems, T b theorems, and the lifting property by introducing some new Riesz operators of these spaces.
This paper presents two natural extensions of the topology of the space of scalar meromorphic functions M(Ω) described by Grosse-Erdmann in 1995 to spaces of vector-valued meromorphic functions M(ΩE). When E is locally complete and does not contain copies of ω we compare these topologies with the topology induced by the representation M (Ω, E) ≃ M(Ω)ε E recently obtained by Bonet, Maestre and the author.
It is shown that if E, F are Fréchet spaces, E ∈ (Hub), F ∈ (DN) then H(E, F) = Hub(E, F) holds. Using this result we prove that a Fréchet space E is nuclear and has the property (Hub) if and only if every entire function on E with values in a Fréchet space F ∈ (DN) can be represented in the exponential form. Moreover, it is also shown that if H(F*) has a LAERS and E ∈ (Hub) then H(E × F*) has a LAERS, where E, F are nuclear Fréchet spaces, F* has an absolute basis, and conversely, if H(E × F*) has a LAERS and F ∈ (DN) then E ∈ (Hub).
Composition operators Cτ between Orlicz spaces Lϕ (Ω, Σ, μ) generated by measurable and nonsingular transformations τ from Ω into itself are considered. We characterize boundedness and compactness of the composition operator between Orlicz spaces in terms of properties of the mapping τ, the function ϕ and the measure space (Ω, Σ, μ). These results generalize earlier results known for Lp-spaces.
In this paper, we present the computation of exact value of nonsquare constants for some types of Orlicz sequence and function spaces. Main results: Let φ(u) be an N-function, φ(t) be the right derivative of φ(u), then we have (i) if φ (t) is concave, then (ii) if φ (t)is convex, then
An operator is said to be nice if its conjugate maps extreme points of the dual unit ball to extreme points. The classical Banach-Stone Theorem says that an isometry from a space of continuous functions on a compact Hausdorff space onto another such space is a weighted composition operator. One common proof of this result uses the fact that an isometry is a nice operator. We use extreme point methods and the notion of centralizer to characterize nice operators as operator weighted compositions on subspaces of spaces of continuous functions with values in a Banach space. Previous characterizations of isometries from a subspace M of C0( Q, X) into C0(K, Y) require Y to be strictly convex, but we are able to obtain some results without that assumption. Important use is made of a vector-valued version of the Choquet Boundary. We also characterize nice operators from one function module to another.
Let ℳ be a semi-finite von Neumann algebra equipped with a faithful normal trace τ. We prove a Kadec-Pelczyński type dichotomy principle for subspaces of symmetric space of measurable operators of Rademacher type 2. We study subspace structures of non-commutative Lorentz spaces Lp, q, (ℳ, τ), extending some results of Carothers and Dilworth to the non-commutative settings. In particular, we show that, under natural conditions on indices, ℓp cannot be embedded into Lp, q (ℳ, τ). As applications, we prove that for 0 < p < ∞ with p ≠ 2, ℓp cannot be strongly embedded into Lp(ℳ, τ). This provides a non-commutative extension of a result of Kalton for 0 < p < 1 and a result of Rosenthal for 1 ≦ p < 2 on Lp [0, 1].
We study the Schur and (weak) Dunford-Pettis properties in Banach lattices. We show that l1, c0 and l∞ are the only Banach symmetric sequence spaces with the weak Dunford-Pettis property. We also characterize a large class of Banach lattices without the (weak) Dunford-Pettis property. In MusielakOrlicz sequence spaces we give some necessary and sufficient conditions for the Schur property, extending the Yamamuro result. We also present a number of results on the Schur property in weighted Orlicz sequence spaces, and, in particular, we find a complete characterization of this property for weights belonging to class ∧. We also present examples of weighted Orlicz spaces with the Schur property which are not L1-spaces. Finally, as an application of the results in sequence spaces, we provide a description of the weak Dunford-Pettis and the positive Schur properties in Orlicz spaces over an infinite non-atomic measure space.
This paper studies the concept of strongly omnipresent operators that was recently introduced by the first two authors. An operator T on the space H(G) of holomorphic functions on a complex domain G is called strongly omnipresent whenever the set of T-monsters is residual in H(G), and a T-monster is a function f such that Tf exhibits an extremely ‘wild’ behaviour near the boundary. We obtain sufficient conditions under which an operator is strongly omnipresent, in particular, we show that every onto linear operator is strongly omnipresent. Using these criteria we completely characterize strongly omnipresent composition and multiplication operators.
In this paper we give a complete description of diameter-preserving linear bijections on the space of affine continuous functions on a compact convex set whose extreme points are split faces. We also give a description of such maps on function algebras considered on their maximal ideal space. We formulate and prove similar results for spaces of vector-valued functions.
A holomorphic map ψ of the unit disk ito itself induces an operator Cψ on holomorphic functions by composition. We characterize bounded and compact composition operators Cψ on Qp spaces, which coincide with the BMOA for p = 1 and Bloch spaces for p > 1. We also give boundedness and compactness characterizations of Cψ from analytic function space X to Qp spaces, X = Dirichlet space D, Bloch space B or B0 = {f: f′ ∈ H∞}.
We characterize the boundedness and compactness of weighted composition operators between weighted Banach spaces of analytic functions and . we estimate the essential norm of a weighted composition operator and compute it for those Banach spaces which are isomorphic to c0. We also show that, when such an operator is not compact, it is an isomorphism on a subspace isomorphic to c0 or l∞. Finally, we apply these results to study composition operators between Bloch type spaces and little Bloch type spaces.
In this paper we show that, for analytic composition operators between weighted Bergman spaces (including Hardy spaces) and as far as boundedness, compactness, order boundedness and certain summing properties of the adjoint are concerned, it is possible to modify domain spaces in a systematic fashion: there is a space of analytic functions which embeds continuously into each of the spaces under consideration and on which the above properties of the operator are decided.
A remarkable consequence is that, in the setting of composition operators between weighted Bergman spaces, the properties in question can be identified as properties of the operator as a map between appropriately chosen Hilbert spaces.