Published online by Cambridge University Press: 09 April 2009
The stability properties of the family ℳ of all intersections of closed balls are investigated in spaces C(K), where K is an arbitrary Hausdorff compact space. We prove that ℳ is stable under Minkowski addition if and only if K is extremally disconnected. In contrast to this, we show that ℳ is always ball stable in these spaces. Finally, we present a Banach space (indeed a subspace of C[0, 1]) which fails to be ball stable, answering an open question. Our results rest on the study of semicontinuous functions in Hausdorff compact spaces.