Article contents
Embeddings of ℓp into Non-commutative Spaces
Published online by Cambridge University Press: 09 April 2009
Abstract
Let ℳ be a semi-finite von Neumann algebra equipped with a faithful normal trace τ. We prove a Kadec-Pelczyński type dichotomy principle for subspaces of symmetric space of measurable operators of Rademacher type 2. We study subspace structures of non-commutative Lorentz spaces Lp, q, (ℳ, τ), extending some results of Carothers and Dilworth to the non-commutative settings. In particular, we show that, under natural conditions on indices, ℓp cannot be embedded into Lp, q (ℳ, τ). As applications, we prove that for 0 < p < ∞ with p ≠ 2, ℓp cannot be strongly embedded into Lp(ℳ, τ). This provides a non-commutative extension of a result of Kalton for 0 < p < 1 and a result of Rosenthal for 1 ≦ p < 2 on Lp [0, 1].
- Type
- Research Article
- Information
- Copyright
- Copyright © Australian Mathematical Society 2003
References
- 3
- Cited by