Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T21:55:18.935Z Has data issue: false hasContentIssue false

What do we GANE with age?

Published online by Cambridge University Press:  05 January 2017

Matthew R. Nassar
Affiliation:
Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI [email protected]
Rasmus Bruckner
Affiliation:
Department of Education and Psychology, Freie Universität Berlin, Berlin, [email protected] International Max Planck Research School on the Life Course (LIFE), Berlin, Germany
Ben Eppinger
Affiliation:
Department of Psychology, TU Dresden, Dresden, [email protected] Department of Psychology, Concordia University, Montreal, H4B 1R6 Quebec, Canada

Abstract

Mather and colleagues provide an impressive cross-level account of how arousal levels modulate behavior, and they support it with data ranging from receptor pharmacology to measures of cognitive function. Here we consider two related questions: (1) Why should the brain engage in different arousal levels? and (2) What are the predicted consequences of age-related changes in norepinephrine signaling for cognitive function?

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aston-Jones, G. & Cohen, J. D. (2005) An integrative theory of locus coeruleus–norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience 28:403–50. http://doi.org/10.1146/annurev.neuro.28.061604.135709.CrossRefGoogle ScholarPubMed
Chan-Palay, V. & Asan, E. (1989) Quantitation of catecholamine neurons in the locus coeruleus in human brains of normal young and older adults and in depression. The Journal of Comparative Neurology 287:357–72.Google Scholar
Eppinger, B., Hämmerer, D. & Li, S.-C. (2011) Neuromodulation of reward-based learning and decision making in human aging. Annals of the New York Academy of Sciences 1235:117.CrossRefGoogle ScholarPubMed
Eppinger, B., Kray, J., Mock, B. & Mecklinger, A. (2008) Better or worse than expected? Aging, learning, and the ERN. Neuropsychologia 46:521–39.CrossRefGoogle ScholarPubMed
Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W. S., Lindenberger, U., Mcintosh, A. R. & Grady, C. L. (2013) Moment-to-moment brain signal variability: A next frontier in human brain mapping? Neuroscience and Biobehavioral Reviews 37:610–24.Google Scholar
Grudzien, A., Shaw, P., Weintraub, S., Bigio, E., Mash, D. C. & Mesulam, M. M. (2007) Locus coeruleus neurofibrillary degeneration in aging, mild cognitive impairment and early Alzheimer's disease. Neurobiology of Aging 28:327–35.Google Scholar
Jepma, M. & Nieuwenhuis, S. (2011) Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience 23:1587–96. Available at: http://doi.org/10.1162/jocn.2010.21548.Google Scholar
Joshi, S., Li, Y., Kalwani, R. & Gold, J. I. (2016) Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89:221–34.CrossRefGoogle ScholarPubMed
Lavín, C., San Martín, R. & Rosales Jubal, E. (2014) Pupil dilation signals uncertainty and surprise in a learning gambling task. Frontiers in Behavioral Neuroscience 7:218.Google Scholar
Manaye, K. F., McIntire, D. D., Mann, D. M. A. & German, D. C. (1995) Locus-coeruleus cell loss in the aging human brain: A nonrandom process. Journal of Comparative Neurology 358(1):7987. doi: 10.1002/cne.903580105.Google Scholar
Nassar, M. R., Bruckner, R., Gold, J. I., Li, S., Heekeren, H. R. & Eppinger, B. (2016)Age differences in learning emerge from an insufficient representation of uncertainty in older adults. Nature Communications. Google Scholar
Nassar, M. R., Rumsey, K. M., Wilson, R. C., Parikh, K., Heasly, B. & Gold, J. I. (2012) Rational regulation of learning dynamics by pupil-linked arousal systems. Nature Neuroscience 15(7):1040–46. Available at: http://doi.org/10.1038/nn.3130.CrossRefGoogle ScholarPubMed
Nieuwenhuis, S., De Geus, E. J. & Aston-Jones, G. (2011) The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology 48:162–75.Google Scholar
Preuschoff, K. (2011) Pupil dilation signals surprise: Evidence for noradrenaline's role in decision making. Frontiers in Neuroscience 5:Article 115. doi: 10.3389/fnins.2011.00115/abstract.Google Scholar
Shibata, E., Sasaki, M., Tohyama, K., Kanbara, Y, Otsuka, K., Ehara, S. & Sakai, A. (2006) Age-related changes in locus ceruleus on neuromelanin magnetic resonance imaging at 3 Tesla. Magnetic Resonance in Medical Sciences 5:197200.Google Scholar
Wilson, R. C., Geana, A., White, J. M., Ludvig, E. A. & Cohen, J. D. (2014) Humans use directed and random exploration to solve the explore–exploit dilemma. Journal of Experimental Psychology: General 143:2074–81.Google Scholar
Wilson, R. S., Nag, S., Boyle, P. A., Hizel, L. P., Yu, L., Buchman, A. S., Schneider, J. A. & Bennett, D. A. (2013) Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology 80(13):1202–208.Google Scholar